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ABSTRACT

A PROBABILISTIC ASSESSMENT OF SARS-COV-2 HOST
INTERACTIONS IN THE CONTEXT OF META-COMMUNITY AND
URBAN ECOLOGY

Nehri, Leman Nur
Master of Science, Biology
Supervisor : Assist. Prof. Dr. Seckin Eroglu

June 2021, 141 pages

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that was detected in
Wuhan, China, in December 2019 and spread all around the world. COVID-19 is
caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which
spreads through close contact. Many studies have been conducted on the
transmission, virulence, and immune response of SARS-CoV-2. The intracellular
mechanism of action of the virus and various host interaction pathways are also
known. In addition, there are many studies on the mutant types of the virus. However,
no study has been found on the microbial host interactions of the specific mutants of
the Spike protein, which is one of the most important structural proteins of the virus.
This protein allows the virus to enter the cell and is the main target of the ongoing

vaccine studies.

In this study, interactions between Spike protein variants and bacteria of gut
microbiota were analyzed with a probabilistic programming language (PPL),
WebPPL. It is preferred since it is an expressive and generative language that can
infer from small data sets. The relationship between the three Spike protein mutants

and the two SARS-CoV-2 variants with the intestinal microbiota was also



investigated. As a result, it was found that different variants of Spike protein exist in
the hosts that have dissimilar intestinal microbial compositions. Because of the fact
that the microbe interplays are very dynamic systems, laboratory applications turn to
be quite costly, time-consuming, and difficult in microbial interaction studies. This
study is expected to be helpful for the applications of interactions between virus

variants and microbiomes for laboratory environments.

Keywords: Probabilistic Programming, Spike protein, SARS-CoV-2, Microbial

Meta-Community, Microbiome
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META-TOPLULUK VE KENTSEL EKOLOJi BAGLAMINDA SARS-COV-
2 KONAK ETKILESIMLERININ OLASILIKSAL BIiR
DEGERLENDIRMESI

Nehri, Leman Nur
Yiiksek Lisans, Biyoloji
Tez Yoneticisi: Dr. Ogr. Uyesi Segkin Eroglu

Haziran 2021, 141 sayfa

Koronaviriis hastaligr 2019 (COVID-19), ilk olarak Aralik 2019'da Cin'in Wuhan
kentinde tespit edilen ve devam eden bir pandemidir. COVID-19, yakin temas
yoluyla yayilan siddetli akut solunum sendromu koronaviriis 2'den (SARS-CoV-2)
kaynaklanir. SARS-CoV-2'nin bulagmasi, viriilans1 ve bagisiklik tepkisi lizerine
bircok ¢alisma yapilmistir. Viriislin hiicre i¢i etki mekanizmast ve gesitli konak
etkilesim yollar1 da bilinmektedir. Ayrica viriisiin mutant tipleri ile ilgili bir¢ok
caligma bulunmaktadir. Ancak, viriisiin en 6nemli yapisal proteinlerinden biri olan
Spike proteininin farkli mutantlariin mikrobiyal konak etkilesimleri ile ilgili
herhangi bir ¢alisma bulunamamistir. Bu protein, viriisiin hiicreye girmesini saglar

ve as1 ¢alismalarinin ana hedefidir.

Bu ¢alismada, Spike protein varyantlar1 ile bagirsak mikrobiyotasinin bakterileri
arasindaki etkilesimler, olasiliksal bir programlama dili (PPL) olan WebPPL ile
analiz edilmistir. Kiiciik veri setlerinden ¢ikarim yapabilen aciklayict ve generatif bir
dil oldugu i¢in bu dil tercih edilmistir. Ayrica, {i¢ Spike protein mutanti ve iki SARS-
CoV-2 varyantinin bagirsak mikrobiyotas ile iligkisi arastirilmistir. Sonug olarak,

farkli bagirsak mikrobiyal kompozisyonlarina sahip konaklarda Spike proteininin

vii



farkli varyantlarinin mevcut oldugu bulunmustur. Mikrop etkilesimleri ¢ok dinamik
sistemler oldugu i¢in laboratuvar uygulamalari maliyetli, zaman alic1 ve mikrobiyal
etkilesim calismalar1 zordur. Bu ¢alismanin, laboratuvar ortamlart igin viriis
varyantlar1 ve mikrobiyomlar arasindaki etkilesim uygulamalaria yardimci olmasi

beklenmektedir.

Anahtar Kelimeler: Olasiliksal Programlama, Spike Protein, SARS-CoV-2,
Mikrobiyal Meta-Komiinite, Mikrobiyom

viii



to my mother



ACKNOWLEDGMENTS

I wish to express my deepest gratitude to my supervisor Assist. Prof. Dr. Seckin

Eroglu for his sensibility, advice, support, and insight throughout the research.

I would like to thank Assoc. Prof. Dr. Samet Bagge for his unforgettable
encouragement, and Dr. Hiiseyin Enis Karahan for his generosity in sharing his
knowledge. I am grateful to my dear teacher Mehmet Ali Baltas1 for his tireless

teaching efforts for years.

I sincerely thank all my family, especially my lovely parents Goniil & Cesimi, my

brother Mustafa, his wife Zehra, my grandmother Netice and my aunt Yadigar.

I would like to thank my dear husband Ertugrul for every moment he added to our
life, and my sweet son Cahit Asaf Nehri for giving joy to my life, with his smile
everything is easy to handle.

| cannot succeed without God's help, I trust in Him and always turn to Him.



TABLE OF CONTENTS

ABSTRACT .t v
OZ oo vii
ACKNOWLEDGMENTS ... X
TABLE OF CONTENTS ...ttt Xi
LIST OF TABLES ...ttt Xiv
LIST OF FIGURES ...ttt XV
CHAPTERS
1 INTRODUCTION ... 1
1.1 COVID-19 and SARS-COV-2.....ccouiiiiiiiieiese sttt 1
1.1.1 COVID-19: Economic, sociological and technological aspects.......... 1
1.1.2  Urbanism, climate change and SARS-COV-2.........cccceovvivevvniiencnnnnnns 4
1.1.3  Phylogeny, structure, and host interactions of SARS-CoV-2............. 5
1.1.4  Genome and proteins of SARS-COV-2.......ccccooviiviiiiiineniiesesceas 9

1.2 Structure, function, and host interactions of Spike protein of SARS-CoV-2

10
1.2.1  Function and structure of Spike protein........c.ccccoeevvvevieiievieceennn, 10
1.2.2  Evolution and host interactions of Spike protein.............cccccveveenee. 11
1.3 Concept of MICroDIOME........ccoviiiiicece e 13
1.3.1  Microbiomes and the human microbiome .............cccccooiiiiiiiinnn 13
1.3.2  GUEMICIODIOME ... 15

Xi



4

1.3.3  Gut microbiome and iIMmMuNe SYStEM.........cccevvreerveriesieeseeriesie e 17

1.4 ReSEArCN QUESTION ....ecuviiiiciecie ettt 17
1.5 Modeling and in Silico @nalysis .........ccccevveieiiieiieic e 18
1.5.1 Constructing theoretical framework .............cccccevveevivevieiieneeie e, 19
1.5.2  Modeling the research design...........cccooiviriiiiieienc i 21
1.5.3  Deterministic Programming vs Probabilistic Programming.............. 24
MATERIALS AND METHODS ... 27
2.1 PATBIMELEIS ...ttt 27
2.2 DLA..c.eiiiecee s 31
2.2.1  Data Of COUNTIIES. .....ciuiiiieieieie e 31
2.2.2  Data Of PArameters.......cccoieiviieieiesiesiee e 32
2.2.3 Data of SARS-CoV-2 variants and Spike protein mutant types........ 32
2.2.4  MiCrobiome data.........ccorveriiiriiriiisieriee e 33
2.3 ANAIYSIS cooeicecc e 33
2.3. 1 SOFIWAIES ... 36
2.3.2  SELLANAIYSIS ..cceicieciiii e 36
2.3.3 S 2 ANAIYSIS ..ccveiiicieie et 37
2.3.4  SEt3ANAIYSIS ...veieiiiiiieiee e 37
2.4 Testing NYPOTNESES.......ocviieiiiiieieee e 38
RESULTS .ttt ettt be et e 39
3l S L TESUILS .. 39
3.2 SEU2 TESUIS ... 40
3.3 S B TESUILS ...t 41
DISCUSSION. ...ttt e 43

Xii



O CONCLUSION ... .ottt 55

REFERENCES ... .o 57

APPENDICES
A. SET 1 DATA TABLE : PARAMETERS ..., 75
B. DATA RESOURCES ...t 79
C. SET 2 DATA TABLE: MUTANT AND VARIANT TYPES................. 88
D. TIME INTERVAL FREQUENCIES.........ccoi e 92
E. SET 3ANALYSES ... 96
F.  Variant and Mutant Significance IndeX..........cccooevveviiiieie i, 107
G.  SARS-CoV-2 variant and mutation distributions (Global).................... 111
H.  Regression RESUILS ........ccooiiiiiiiie e 113
I SET-1 CORELATIONS ...ttt e 123
J. Data SOUICE TaDIES ......coieiieiieee e 137

Xiii



LIST OF TABLES

TABLES

Table 1.1 Hypotheses that are used in this StUdY............ccovveiviieiiciecccece e 17
Table 3.1 Multi-linear regression analysis results of the dependent and independent
VANADIES. ... e 40

Xiv



LIST OF FIGURES

FIGURES

Figure 1.1. The vaccine types for COVID-19........cccccovviiiiiiiieie e 3
Figure 1.2. A summary of the COVID-19 disease from its origin to the human
ISBASE ...ttt et a et r et et e ne e teeneenreenre et 5
Figure 1.3. NIAOVIFaleS OFUEN .......cveiieiecie e 6
Figure 1.4. Structures of the NIAOVIFUSES .......cccveveiieiiee e 7
Figure 1.5. The life cycle of the SARS-COV-2.......cccooiiiiiiniiiiieeeee e 8
Figure 1.6. CryoEM structure of Orf9b-Tom70 compleX.........cccovvvverenirencnnnnnn. 9
Figure 1.7. Schematic diagram of the SARS coronavirus genome..............ccecueevee. 9
Figure 1.8. Schematic representation of the SARS-CoV-2 Spike protein.............. 11
Figure 1.9. SARS-CoV-2 coronavirus spike sequence variation...............cc.ccocveee. 13

Figure 1.10. The network representation of the relations that were used in this

] (010 | RS S 19
Figure 1.11. The schematic representation of the research design. ............ccccceev.... 23
Figure 2.1. Representation of the selected parameter Sets. .........ccccevvvereieninnnnnns 28

Figure 2.2. The geographical distribution of the selected countries for the analysis

from the GISAID database. ..........coveieiieiiiiieiieee e 32
Figure 2.3. Representation of hypotheses testing process as a flowchart. .............. 38
Figure 4.1. The distribution of the 201/501Y.V1 variant..........c.cccccocevvveveiiieieenns 45

Figure 4.2. Global distribution of S:E484 mutant. Colors represent different
COUNTIIES .ttt ettt ettt et e et e et et e e s e s s e s teeseeeseesseeneeemeeneeesseeneenseenseaneenreeseenee e 47
Figure 4.3. Global distribution of S:Y144- mutant. Colors represent different
(01010 01 £ TSRS 48
Figure 4.4. Global distribution of S:H69- mutant. Colors represent different
COUNTIIES .ttt ettt et s et e et e te e s e e s e s teeseeeseenseeseeemeeseeesseeneenseanseaneenreeneenee e 48

XV






CHAPTER 1

INTRODUCTION

1.1 COVID-19 and SARS-CoV-2

111 COVID-19: Economic, sociological and technological aspects

Coronavirus disease 2019 (COVID-19) is the name of a currently well-known
pandemic disease that affects hundreds of millions of people all around the world
(Pal & Banerjee, 2020). There are significant variations in COVID-19 susceptibility
and severity/fatality from person to person (G. Anderson & Reiter, 2020). It is known
that COVID-19 vulnerability and fatality are affected by many variables: There are
studied relationships between sunlight exposure (Asyary et al., 2020), dialysis,
poverty, race, urbanization (Connolly et al., 2020), and COVID-19 (Bhayani et al.,
2020).

COVID-19 caused many deaths around the world, and at the same time, it caused a
social transformation by affecting the human population in different aspects that can
be categorized as economic, social, and technological (Mofijur et al., 2021).
Significant reductions in income, rising unemployment (Pal & Banerjee, 2020),
technological reshapings in the healthcare area (Queen, 2021), changes in social
decisions (Mofijur et al., 2021) are some examples of the different aspects of the
impacts of COVID-19 on human life.

Vaccine technologies are a good example of embodying the different effects of
COVID-19 on the human population because with vaccination various economic,
social and technological problems and transformations regarding this disease have

emerged. Since the pandemic shows its strict influence worldwide, to prevent the



virus circulation among humans and decrease the harms of the virus, many vaccines
were produced and proposed to the world (Krammer, 2020). Some newly popular
vaccines for the disease are based on DNA & RNA technologies currently getting
approval from the FDA (Figure 1.1). Some of them are based on traditional vaccine
technologies like viral-based vaccines, protein vaccines, inactivated vector vaccines,
etc. (Krammer, 2020)

The vaccine development process is very costly and a long-term project in the normal
standards. A vaccine can be produced in nearly 15 years, and every step in the
process needs generous funding, market potential, confirmation of data, etc
(Krammer, 2020). Despite the traditional vaccine development process, the COVID-
19 vaccine development process is a very short-term project (Krammer, 2020). The
current vaccines have been developed within nearly one year, and they have become
the subject of the approval of international organizations like the FDA for immediate
human use (Krammer, 2020). Since there is a big market for COVID-19 patients and
also the vaccine development process is quite short, many small-scale companies are
in the vaccine development process, and emerging technologies are also now
accepted widely (Krammer, 2020). For instance, RNA-based vaccines have never
been approved by international health organizations but in this chaotic era, they get
approvals and many companies are producing and selling these vaccines (Krammer,
2020).
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Figure 1.1. The vaccine types for COVID-19 (Krammer, 2020).

Since the companies in the market have various technologies (Figure 1.1.) and
because the budget allocated by the countries is different (OECD Policy Responses
to Coronavirus, 2021), there are different types of vaccines for global production and
distribution. The costs of the vaccines also have variants among the Technologies;
therefore, there are vaccines for countries based on the levels of income (OECD
Policy Responses to Coronavirus, 2021). Just as the economic diversification of the
vaccine types for countries, there is also diversification on acceptance levels for the
vaccines by the people. For instance, some people are against vaccine treatment, and
some people prefer different types of vaccines due to their educational background
(Lazarus et al., 2021). In addition to these, since economic restrictions define the
vaccine preferences, people who are citizens of different countries can access only
the vaccine types supplied by the governments (OECD Policy Responses to

Coronavirus, 2021).



1.1.2 Urbanism, climate change and SARS-CoV-2

Even though there are lots of microbial circulations among living organisms, modern
microbial interactions have some kind of specific attributes that are caused by mainly
two major parameters: Climate change and urbanism. Climate change is the name
given to the change of the climate systems with chemicals, temperature, and
biological processes. Many climate changes have been experienced throughout
world history (Stouffer et al., 2006). Modern climate change is the main outcome of
the industrial human activities which were operated especially after the 1800s (Karl
& Trenberth, 2003). These activities changed the earth's ecosystem by contributing
industrial chemicals to the atmosphere (Daly & Zannetti, 2007), destroying the floras
and faunas, and decreasing biodiversity by human hands (Avise et al., 2009). The
changes in the ecosystems can be seen firstly in microorganisms since they have an
immense capacity for changing their genomes; therefore, these organisms can be
counted as the major indicators of the ecosystem changes (Singh et al., 2010). In
addition to climate change, urbanization is one of the significant trends that affect
the ecosystem’s microbial composition (Pickett, et al. 2016). Urban areas are rapidly
growing worldwide, and this term is known as urbanization (Sun et al., 2020) and
urbanism is the discipline that explores the relationship of these urban areas with the
environment (Roggema, 2016). Due to climate change and urbanism, the microbial
composition of the earth has been changed remarkably, and therefore interactions
and evolution of microbial organisms are strongly affected by these processes (Reese
etal., 2016).

Since the SARS-CoV-2 virus is a type of virus emerging from the areas of the
interactions between rural and urban patches, this virus is an example of a microbe
that emerged from human population and wild organism interactions (A. Banerjee et
al., 2021). These interactions are observably strong in Wuhan, the city that SARS-
CoV-2 emerged, due to rapid urbanization and composed various urban (Gui et al.,
2019). In addition to urbanization processes, climate change is blamed for the

emergence of SARS-CoV-2. Since urbanization and climate change have impacted



the interactions between humans and the environment, the viral interactions are
affected by them and we experienced these phenomena as a pandemic in COVID-
19.

1.1.3 Phylogeny, structure, and host interactions of SARS-CoV-2

COVID-19 is caused by the SARS-CoV-2 virus which is shared by many organisms
like bats, pigs, cats, and humans (Figure 1.1). The SARS-CoV-2 virus belongs to the
SARS-MERS viral family in the evolutionary pathway and variants of these diseases
(like SARS) have been seen before (D. E. Gordon et al., 2020)
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host detected in humans

e
7 HCoV-NL63
]

HCoV-229E

i A
P covcce
?

SAOD uewny

HCoV-HKU1

"

Virus diversity

S T T T

—
v _a SARS-CoV

Figure 1.2. A summary of the COVID-19 disease from its origin to the human disease
(Corman et al., 2018).
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SARS-CoV-2 is an RNA virus belonging to the Nidovirales order Coronaviridae
family (Figure 1.3) (Enjuanes et al., 2006). SARS-CoV-2 is evolutionarily related to
HCV-229E, NL63, OC43, and HKU1l as belonging to the same family,



Coronaviridae, which are viruses that cause common colds of 15-30 % in humans
(W. Liuetal., 2021).

Order Nidovirales
Family Arteriviridae Coronaviridae Roniviridae
Genus Arterivirus Coronavirus Torovirus Bafinivirus Okavirus
EAV Group 2a EToV GARoV (GAV
Groupand | |py MCoV (MHV) BToV WBBaV (WBV) VARV (YAV)
tentative SHFV BCoV HToV
members PRRSV HCoV-0OC43 PToV
HCoV-HKU1

& ; PHECoV (PHEV)

aroup 1a

TGECoV || Group 2b IBooV ugw

(TGEV) SARS-CoV TCoV

FCoV BtCoV-HKU3

CCoV BtCoV-HKUS

BtCoV-HKU9

Group 1b BtCoV-133

HCoV-229E

HCoV-NL63

PEDCoV

(PEDV)

BtCoV-512

Figure 1.3. Nidovirales order (Enjuanes et al., 2006).

Viruses belonging to Nidovirales order show similar structural features (Figure 1.4).
There are few structural proteins and RNA as genetic material (Enjuanes et al.,
2006). Nidoviruses have a lipid envelope, and this envelope protects the genetic
material from the environment. All nidoviruses have Nucleocapsid (N) protein which
interacts with Membrane protein (M). Both structures and proteins vary among the
viruses. The genome sizes vary among the nidoviruses, whereas the genome
structures remain similar. All genomes have two big Open-reading frames (ORFS)
that hold the genetic information of proteins that are responsible for regulations of
transcription. The parts for structural proteins (such as M and N) stand in the genome
near ORFs (Enjuanes et al., 2006).
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Figure 1.4. Structures of the nidoviruses (Enjuanes et al., 2006).

The life cycle of SARS-CoV-2 consists of four stages; the attachment of the virus to
the cell and the transfer of genetic material, the processing of genetic material, the
assembly of viral proteins resulting from translation, and the unified virions to leave
the cell (Figure 1.5) (V’kovski et al., 2021).
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Figure 1.5. The life cycle of the SARS-CoV-2 (V’kovski et al., 2021).

SARS-CoV-2 proteins are associated with some of the host proteins and make
complexes and these complexes alter the effect of the virus on the host (D. E. Gordon
et al., 2020). For instance, a virus-host protein-protein interaction (PPI) formed by
TOM-70 (a host cell membrane protein) and Orf-9b (a SARS-CoV-2 protein) is an
example of this type of relation (Figure 1.6) (D. E. Gordon et al., 2020). Such SARS-
CoV-2 virus-host protein interaction pathways can also be associated with MERS
and SARS-CoV viruses and they are potential drug development targets due to their
shared patterns (D. E. Gordon et al., 2020).
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1.14

Genome and proteins of SARS-CoV-2

The SARS-CoV-2 genome consists of two ORF parts, which encode non-structural
proteins. In addition to the two ORFs, four structural gene regions carry the genetic

information of the structural proteins of the virus (Figure 1.7) (Wertheim et al.,

2013).
DIB 5l kb 1(} kb 1.'] kb 20| kb 25 kb 30] kb
ORF1la S M N
(|
I |
ORF1b E
PLP2 Y domain RdRp Nsp15-16 M

Figure 1.7. Schematic diagram of the SARS coronavirus genome (Wertheim et al.,

2013).



In SARS-CoV-2, 16 nonstructural proteins (from cleavage of the two big Orf
proteins), four structural proteins (spike (S), envelope (E), membrane (M), and
nucleocapsid (N)), and eight accessory proteins are found (Yoshimoto, 2020). The
polyproteins of Orfla and Orflb are cleaved to smaller non-structural proteins
(NSPs). NSPs are interacting with each other and regulate gene expression
(Yoshimoto, 2020). Membrane protein makes the lipid membrane of the virus,
Nucleocapsid protein links via the Membrane protein and encapsidated the RNA
genome. Envelope protein is an integral membrane protein and makes an ion channel
and also plays a role in the virus replication process. Spike protein is the surface

glycoprotein and mediates host cell attachment of the virus (Yoshimoto, 2020).

1.2 Structure, function, and host interactions of Spike protein of SARS-
CoV-2

1.2.1 Function and structure of Spike protein

Spike protein is one of the most important structural proteins of SARS-CoV-2
(Guruprasad, 2021). This protein recognizes and binds to the human host cell surface
receptor angiotensin-converting enzyme-2 (ACE2) receptors and provides entry into
the cell (Guruprasad, 2021). The immune response of the host is also caused by the
detection of the Spike protein by the host (Lu et al., 2004). Moreover, Spike protein
determines the infectivity and transmissibility of the virus and it is the major antigen
inducer to make an immune response (Hulswit et al., 2016). Therefore, many

vaccines have been designed to target Spike protein (Du et al., 2009).

Spike protein consists of two subunits: S1 and S2 (Figure 1.8). S1 is responsible for
binding to ACE2 receptors; after, this binding process, the S2 subunit performs the
fusion process into the cell and allows the genetic material of the virus to enter the
cell (Demers-Mathieu et al., 2020). Cleavage of the S1 subunit from S2 is important
for the infection; therefore, antibodies that bind Spike protein and prevent cleavage,
and inhibits the virus fusion to the cell (Demers-Mathieu et al., 2020).

10
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Figure 1.8. Schematic representation of the SARS-CoV-2 Spike protein (Y. Huang
et al., 2020).

1.2.2 Evolution and host interactions of Spike protein

SARS-CoV-2 is also found as a haplotype in its host as an RNA virus, and Spike
proteins can also be categorized by haplotype analysis. Haplotypes are cumulative
variations on the genetic data in a single chromosome (Tourdot & Zhang, 2019). In
haplotype variations, a variant is dominant among the other variants, and these
variants are found in very low frequencies comparing to the dominant haplotype
(Topfer et al., 2013). Viruses and viral proteins are found in the host as a haplotype

structure, as in the example of Spike protein. Spike proteins are made up of small

11



differences between different haplotypes that evolved from the same ancestor
(Pereson et al., 2021).

There are two main causes of the variation in a viral population: recombinations and
mutations (Topfer et al., 2013). Even though mutations and recombination events are
found in the viral genome, especially recombinations are rare (Topfer et al., 2013).
In viral quasispecies, the dominant haplotype shows very low recombination events.
Quasispecies are the viral groups in a viral population composed of haplotype
variations (Domingo, 2002).The Receptor Binding Domain (RBD) of Spike protein,
which binds to human ACE2 receptors, is not a recent acquisition by recombination,
but rather an ancient gain that is common with bat viruses (Boni et al., 2020).
Therefore, mutations (such as deletion and insertion), but not recombination, have
great importance in Spike protein (and SARS-CoV-2) evolution, in that they generate
Spike protein variants (Figure 1.9) (Boni et al., 2020). Because its evolution rate is
similar with each clade of SARS-CoV-2 variants, Spike protein is the major
evolutionary driver of the cell, and therefore variants of SARS-CoV-2 are also

largely categorized according to Spike protein variants (Pereson et al., 2021).
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Figure 1.9. SARS-CoV-2 coronavirus spike sequence variation (V’kovski et al.,
2021).

1.3 Concept of microbiome

1.3.1 Microbiomes and the human microbiome

Microbiomes, which can be defined as the assemblage of the microbes in a host, are
representatives of diseases or the health condition of the host (Marchesi & Ravel,
2015). The microbiomes are the main indicators of singular attributes that are
directly related to the host (Bruijning et al., 2020). The genetic problems of the host
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can be detected from its microbiome content (Bresalier & Chapkin, 2020). For
instance, the effects of Endocrine-Disrupting Chemicals (EDCSs) in the air can be
seen in the lung microbiota of the terrestrial animals easily (Segal et al., 2016). The
gut microbiota is another target for the EDCs (Kumar et al., 2020). Since human
microbiomes are major representative entities of the host’s attributes -such as diet,
lifestyle, medical record, etc.- as a whole (Scepanovic et al., 2019), the changes in
microbiome content can be used for inferring the evolutionary forces that act on the
host (Bruijning et al., 2020).

In microbiomes, there are ecological relations among species. The dominant species
(founder species) of the microbiomes alter the host’s biological reactions by
providing some chemicals (Trosvik & de Muinck, 2015). For instance, the presence
of a species can alter the host’s immune response Vvia triggering the host to make
more IgA-Immunoglobulin A, which affects the immune response, especially in
respiratory areas, as a first step reaction of the immunity (Donaldson et al., 2018).
The dominant species and other species are changing in health conditions from
disease conditions in a microbiome (Rinninella et al., 2019). It is known that the
abundance of species in the intestinal microbiota is related to the diseases and clinical
blood markers of the host organism (Manor et al., 2020). The microbial composition
-viruses, fungi, bacteria- in the microbiota contributes to many metabolic functions
of the host and plays a role in many physiological effects, especially the immune
response. The term dysbiosis is used to describe situations where changes in the
microbiota are directly related to a host's illness. This term indicates that a microbiota
community is directly related to a disease of the host, in the health state where the
host does not have this disease, the composition of the microbiota is significantly
different from the disease state. It is an area that has been studied that these
conditions, namely the composition of the microbiota and the relative abundances of
the organisms in it, are related to the disease and health conditions of the host (E. Li
et al., 2015). Keystone species are the species that are found in low abundance but
in a very high number of ecological connections via other species in the microbiome

(S. Banerjee et al., 2018). Dominant species are in a positive relationship with other
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members of the microbiome via providing a usually mutualist environment, whereas
keystone species have a high number of both positive and negative relations with
other microbes (Trosvik & de Muinck, 2015).

1.3.2 Gut microbiome

The human gut microbiota compositions show discontinuous variation rather than a
continuous variation of gut microbes; in other words, the microbes in the gut are
found with certain clusters (Arumugam et al., 2011). These distinct microbial sets
are called enterotypes, and three types of enterotypes (with different dominant
species and different microbial compositions) have been detected in human
microbiota (Arumugam et al., 2011). Enterotypes indicate a balanced relationship
between the host and its microbiota (Arumugam et al., 2011). The most important
characteristic of the community composition of the gut microbiota is the functional
relationship, rather than which bacterium is present in the microbiome (Arumugam
et al., 2011). The gut microbiota shows phylogenetic variation at the genus and
phylum levels among enterotypes and represents the functional variation at the class
level (Arumugam et al., 2011).

Firmicutes and Bacteroides phyla are the most dominant species in the gut
microbiota (Thursby & Juge, 2017). Microbes in the gut microbiota are exposed to
selective forces both by the host factors such as diets, diseases and by other microbes
that are located in the gut (Hadi et al., 2020; Scanlan, 2019). This is why some low-
abundance bacteria survive in the gut (Arumugam et al., 2011). Every bacterium in
the gut follows different survival strategies and usually the most abundant function
will be related to the most dominant type (Arumugam et al., 2011; Loftus et al., 2021;
Rinninella et al., 2019). However, since the most dominant species cannot provide
all functions, the functional composition of different species is important for the

intestinal microbiota (Arumugam et al., 2011; S. Banerjee et al., 2018).
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The human gut microbiome composition is affected by many factors. For instance,
the human intestinal microbiota shows a geographical variation (Mobeen et al.,
2018), which is due to different parameters (e.g. genetics, lifestyle, climate, diet,
altitude etc.) that affect cumulatively (Das et al., 2018). However, even many factors
affect the microbiome, enterotype variations are thought to be independent of age,
gender, BMI, and geography, but they are closely related to dietary habits
(Arumugam et al., 2011; Mobeen et al., 2018)

By looking at the geographical enterotype and intestinal microbiota composition
variations, Firmicutes and Bacteroidetes are the most common phyla, but different
countries show different abundances for these species (Mobeen et al., 2018).
Bacteroides are the dominant organisms of the gut microbiome in general, but in
some enterotypes, Firmicutes can be the dominant organism (Arumugam et al., 2011;
Mobeen et al., 2018; Trosvik & de Muinck, 2015). Actinobacteria is the most
common phyla in the gut microbiota; after, Firmicutes and Bacteroidetes,
Actinobacteria is the keystone taxon of the gut microbiota and is involved in a high
degree of ecological network with other gut microbes (Trosvik & de Muinck, 2015).
Proteobacteria is the most common species after Bacteroides, Firmicutes, and
Actinobacteria in the human intestinal microbiome (Mobeen et al., 2018).
Proteobacteria is the species that represents the functional variation that occurs in the

gut microbiome among different microbe compositions (Bradley & Pollard, 2017).

It is known that the mucosal immune system, which has a very important role in
immunity, has a network that can be affected by various factors. This system is
thought to be dysregulated due to intestinal problems. Studies have begun to show
that the overall immune response of the organism is shaped by a cross-talk between
the gut and the lung at the organism level (Tulic M C, Piche T, 2016). There are
many studies reporting the relevance of gut-lung microbiota crosstalk to COVID-19
(Srinath et al., 2020).
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1.3.3 Gut microbiome and immune system

The gut microbiome is affected by diseases and also it affects the disease conditions:
Rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease (IBD), allergic
diseases, systemic lupus erythematosus (SLE), skin-related autoimmune
pathologies, neurological inflammatory diseases, and many cancer types can be
counted among diseases related to gut microbiota (Lazar et al., 2018). The
composition of gut microbiota also changes during COVID-19 disease (Yeoh et al.,
2021). In addition to these, viral infections in the respiratory tract and lung affect the
gut microbiota by altering the function and composition of the gut microbiome
(Sencio et al., 2021) since the intestinal microbiota is associated with the lung
microbiota and the changes in the lung microbiome affect the gut microbial
composition (Dhar & Mohanty, 2020). Moreover, gut microbiota prevents pathogen
invasion by insisting on various strategies against pathogens such as Killing
pathogens directly, supporting the immune system of the host, or making
competition for food (Pickard et al., 2017).

1.4  Research question

The main concern of this study is to try to understand whether particular gut
microbiota compositions tolerate variants of the SARS-CoV-2 virus and Spike
protein mutations of the virus. In other words, it aims to investigate whether the
composition of gut microbiota affects the infectivity of variants of SARS-CoV-2 and

variants of Spike proteins.

Table 1.1 Hypotheses that are used in this study.

H1: One of the following parameters can explain COVID-19 death and
reproduction rates: Diet, diseases, economic parameters, environmental

factors, micronutrient deficiencies, population parameters.
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H2: One of the following parameters can explain SARS-CoV-2 infectivity
between variants and specific mutations on Spike protein: Diet, diseases,
economic parameters, environmental factors, micronutrient deficiencies,
population parameters.

H3: Microbes residing gut can explain which SARS-CoV-2 mutant infected the
host.

1.5  Modeling and in silico analysis

From the data obtained by the literature research for his study, it has been determined
that many different parameters in human life are related to both intestinal microbiota
and COVID-19 (Figure 1.10). To investigate these relations (Figure 1.10), a
generative theoretical explanation was needed. Moreover, to test hypotheses (Table
1.1), it was a need for modeling the in silico design and apply the model to get results

with the help of probabilistic programming tools.
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Figure 1.10. The network representation of the relations that were used in this

study.

151 Constructing theoretical framework

Integrated methods are needed to wholly understand the place of humans in the
ecosystem (Pickett et al., 1997). While putting people in an ecological model, it is
necessary to consider human activities such as economical activities, social relations,
and etc. (Grimm et al., 2008a). Therefore, clean theoretical grounds are needed to
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understand the patterns that occur within urban and human-occupied systems. For
this theoretical basis, it is necessary to relate economic and social aspects to
biological-physical systems (Pickett et al., 1997). It is proper to use the basic theories
and explanations of ecology (such as patch dynamics, spatial heterogeny) on this
ground; because, in the ecological evaluation of city and city-related systems, it is
sufficient to modify existing theories rather than making a new theoretical ground
(Niemeld, 2000).

Different prevailing paradigms are in place for understanding different ecological
relationships within city systems (Pickett et al., 2016). When different relationships
are studied in different parts of the city, the methods and paradigms also change. As
mentioned above, an integrated approach is required to study human relations in the
city (Grimm et al., 2008a). The discipline of Urban Ecology combines the human
elements of humanity with other physical, chemical, and biological factors of the
biosphere in the context of ecological relations, and the discipline is maturing to
provide a theoretical basis for practical studies (Grimm et al., 2008a).

However, the biosphere and ecological dynamics change and evolve as a result of
evolutionary and geographical processes (Brunner et al., 2019). The impact of
climate change and urbanization also manifests itself in human-occupied ecosystems
from different angles: city systems are a hotspot for environmental changes (Grimm
et al., 2008a). Processes such as changes in biodiversity, altering biochemical
reactions are some examples of these transformations of the environment (Grimm et
al., 2008a). Therefore, it is a concern that how the city systems - and therefore people

- will be positioned in these changing processes (Riffat et al., 2016).

Recently, it has begun to be discovered that microbes are important not only to
protect human health but also to keep city-systems sustainable (King, 2014). The
importance of city microbiomes in water distribution systems and plant-microbiome
relationships can be shown as an example of this issue (King, 2014). Moreover, the
microbial structure of the built environment affects mental health (Hoisington et al.,

2015) and also human behavior (Stamper et al., 2016). In addition, there are studies
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about the effect of indoor bacteria on the built environment (Kembel et al., 2014)
and studies to make the architectural design microbially sustainable (Brown et al.,
2016).

The theoretical starting point of this study is based on the maturity of the studies
about microbes of the city systems, human health, and human activities. In addition,
it can be said that the relationship of the microbiome concept with the concept of self
is questioned and includes a philosophical theoretical ground as well (Rees et al.,
2018) and the impact of the microbiome concept on evaluating our self-
consciousness is also discussed in the literature (Relman, 2012). Therefore, the
microbiome concept creates a link both in the context of ecological relationships and
health (Inkpen, 2019). In addition to all these, it has been taken into account that
microbes live together as a meta-community, and theories that have already been
created to understand ecological relationships at the macro level metacommunities
(Leibold et al., 2004) have been adapted to the microbial level as microbial
metacommunity (Miller et al., 2018). Therefore, the microbial metacommunity is
suitable for the holistic evaluation of city systems and human ecosystems in terms of

establishing a theoretical infrastructure.

152 Modeling the research design

The data required to know the hosts with various intestinal microbial composites
infected with which mutant type have not been found in the literature. In addition,
the geographic distribution analysis of the gut microbiota is limited in the existing
literature. In contrast, the factors associated with COVID-19 are easier to find in the
scientific literature. For this reason, a study design has been made in which relevant
factors were brought together and passed through different analysis processes to
reach a simulation of interaction on microbiome compositions and mutant types
distribution (Figure 1.11).
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As a result of the literature reviews, the relationship of the microbiota with many
parameters has been confirmed. As a result of literature research different parameters
are to be known as related to COVID-19. It is also known that COVID-19 causes
change in the gut microbiota composition. However, no literature was found during
this study as to how different variants and Spike protein mutations are tolerated by

different microbiota.

In the study, the relationship between COVID-19 with some parameters from various
angles was analyzed. Analysis of the relationship between different microbiota
compositions and some mutants of Spike proteins -that were gathered from the

previous analyses in this study- was made.

There is no second virus like SARS-CoV-2 with detailed global data and global
distribution of its different mutants. Globally, the closest data belong to the SARS-
MERS family, but even theirs does not come close to SARS-COV-2 (Petrosillo et
al., 2020). For this reason, the results of the study could not be tested with a second

virus as a control group.
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Figure 1.11. The schematic representation of the research design.
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1.5.3 Deterministic Programming vs Probabilistic Programming

Although the analysis process was available to use deterministic computational tools
with sufficient data at the beginning (See Appendix A), probabilistic programming
tools were also included in the analysis because the data set shrank in the later parts

of the analysis, and the deterministic programs made false inferences in this data set.

In deterministic programming languages, the user describes in a deterministic way
what to do with the program and what processes to follow while executing the
program (Mitsos et al., 2018). However, probabilistic programming languages
(PPLs), such as STAN and WebPPL, do not expect the user to provide all the
knowledge for execution (Ghahramani, 2015). PPLs learn by themselves over the
data and they have algorithms to infer some relevant conclusions from this data in

several ways and also they can learn from evidence/observation (Cornell, n.d.).

One of the features of PPLs is that they separate the model from the inference
algorithm inferred from the model; therefore, it is possible to work by separating the
model and the inference algorithm over PPL (Sarker, 2021). PPLs with inference
algorithms, can both make inferences in the forward direction and construct
causations in the backward direction and thus, causal relations between input and
output can be detected by PPLs (Dimovski A.S., 2020). Therefore, it is possible to

simulate the process quite efficiently.

PPLs use generative models and there may be randomness (Tavares et al., 2019). In
PPLs, there is uncertainty to simulate the models; therefore, the probability is the
approach to reach uncertainty (Tavares et al., 2019). PPLs use random variables that
are the values that represent the uncertainties, which means that the value of the
variable is a probability associated with the parameter (Obeid et al., 2018). In PPLs,
parameters are unobserved (latent) random variables of interest; they are inferred

from observed data (Cornell, n.d.).
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There are also conditional probabilities which some variables depend on different
variables. With these conditions, the PPLs can learn from data (Olmedo et al., 2018).
PPLs use the subjective probability approach (Bayesian model) rather than the
frequentist probability approach (Olmedo et al., 2018). By this, PPLs can capture
such a pattern of reasoning; even a single model can induce complex explaining
away dynamics and, many inference algorithms are available to infer from a small
sample in PPLs (Cornell, n.d.). In addition to this, some PPLs can handle big data

size with some algorithms such as variational inference (Cornell, n.d.).
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CHAPTER 2

MATERIALS AND METHODS

In this study, a three-step process was followed. In the first stage, the relationship
between COVID-19 death rates and COVID-19 reproduction rates was analyzed on
a country basis with selected parameters (Figure 2.1). In the second step, the relations
of the parameters on different mutants of Spike protein and variant types of the
SARS-CoV-2 were examined. In the third stage, microbiota via mutant type analysis
in probabilistic programming was performed by using the data obtained from the
results of the first two stages. In this last stage, the possible distributions of Spike
protein mutant types and SARS-CoV-2 variants in related microbial compositions

were visualized.

2.1 Parameters

Six group parameter sets -diet, environmental factors, micronutrient deficiency,
economic parameters, population parameters, and diseases- were created to be used
in the analysis. Each parameter set was tried to be constructed in a holistic structure

so that it could represent the main parameter from various angles (Figure 2.1).
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Figure 2.1. Representation of the selected parameter sets. The six sets of parameters
are represented as a cluster and the dependent variables of the Set 1 Analysis
(COVID-19 Fatality Rate and COVID-19 Reproductivity Rate) are represented as an
ellipse. COVID19 reproduction rate shows the newly infected individuals by an
infected person. If the rate is bigger than 1, the virus spread. If the rate is smaller

than 1, the virus will gradually disappear from the population (See Appendix B).

Diet: Diet is one of the main parameters that are related to COVID-19 deaths
(Bousquet et al., 2020). Some types of diets show a relationship with COVID-19
deaths and COVID-19 cases (Greene et al., 2021). People in malnourished countries
are more prone to COVID-19 severity comparing to people living in countries with
no malnutrition problems (Mertens & Pefalvo, 2021). Moreover, COVID-19 cases
show a strong relationship with obesity (Ho et al., 2020). Among the cases that have
Body-Mass Index (BMI) is bigger than 23 kg/m?, a linear relationship of increasing
COVID-19 severity (Gao et al., 2021). Since the nutrition status affects the immune

system, intake of the necessary macronutrients also has a significant relation with
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the COVID-19 severity condition (Chaari et al., 2020). For these reasons, the Diet
parameter set (Figure 2.1) include the parameters of the selected countries: BMI,
undernourishment levels, animal fat consumption, sugar consumption, and vegetable
oil consumption (Figure 2.1). For the resources of the data of these parameters, see

Appendix B.

Diseases: COVID-19 cases and COVID-19 fatality are related to many diseases:
Among cancer patients, COVID-19 death rates are 13.3% higher than other patients
(Moris et al., 2020), and some types of cancer patients are in the highest risk groups
for COVID-19, such as lung cancers (Omeroglu Simsek, 2020). Chronic obstructive
pulmonary disease (COPD) and asthma are related to COVID-19 (Skevaki et al.,
2021). Many of the non-communicable diseases (NDCs, diseases that cannot pass
from person to person) such as diabetes or hypertension are related to COVID-19,
and patients who have NDCs are the risk groups for COVID-19 (Kluge et al., 2020).
Anemia is also related with COVID-19 severity (Hariyanto & Kurniawan, 2020).
For these reasons, the Diseases parameter set (Figure 2.1) includes the parameters:
Anemia, general cancer rates, lung cancer, asthma, COPD, pneumonia, NDCs,
diabetes, diarrheal diseases, colorectal cancer levels of the countries (Figure 2.1).

For the resources of the data of parameters, see Appendix B.

Economic Parameters: Economic statuses such as conflict, competition, and
cooperation are linked with biology, especially with sociobiology, and the
philosophical aspect of these connections have been constructed in literature
(Hirshleifer, 1978). The applications of the economy on biological sciences are also
widely studied in many disciplines such as urban ecology (Grimm et al., 2008b). The
relationship of economy and biology can also be applied to the COVID-19 problem:
The short-term and long-term consequences of the COVID-19 are related to
household type. Moreover, the effects of COVID-19 are socially stratified (Mikolai
et al., 2020). The relationship between COVID-19 cases and conflict situations is
also another aspect of economic status (Bloem & Salemi, 2021). GINI index is a
parameter that represents the economic inequality in a society; in other words, it

shows the gap between the poor and the rich in a given country (Elgar et al., 2020),
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and the relationship of the GINI index and COVID-19 deaths are also available in
the literature (Elgar et al., 2020). For these reasons, the Economic Parameters
parameter set (Figure 2.1) includes the parameters: conflict levels, GDP, GINI index,
tax rates, and household type of the countries (Figure 2.1). For resources of the data

of parameters, see Appendix B.

Environmental Factors: Many environmental factors like temperature (Xie & Zhu,
2020; Xiong et al., 2020), sunlight (Asyary & Veruswati, 2020), open green area
(Venter et al., 2020), whether factors such as rainfall (Hariyanto & Kurniawan, 2020;
Tosepu et al., 2020), air toxicity (Travaglio et al., 2021), environmental pollutants
(Bashir et al., 2020) are related with COVID-19 cases and COVID-19 deaths. Also,
institutional features affect COVID-19 cases (P. Li et al., 2020). For these reasons,
the Environmental Factors parameter set (Figure 2.1) includes the parameters:
sunlight exposure, rainfall, forest area, CO2 emissions, air toxicity levels, general
toxicity levels, and the average temperature of the countries (Figure 2.1). For
resources of the data of parameters, see Appendix B.

Micronutrient Deficiency: Micronutrients are minerals and vitamins that play
important role in homeostasis by providing various functions in the body (Carr,
2020). Micronutrients are also important for the immune system to work properly
and micronutrient deficiencies are related to COVID-19 also (Carr, 2020). Zinc
deficiency is highly correlated with COVID-19 cases, especially in poor countries
(Jothimani et al., 2020) and zinc supplementation is offered for COVID-19 patients
(Wessels et al., 2020). Vitamin D is another essential micronutrient for the immune
system, and COVID-19 cases and severity are strongly related to vitamin D
deficiency (D. C. Anderson & Grimes, 2020). Also, provine-iodine nasal sprays
protect COVID-19 cross infection (Frank et al., 2020). Vitamin A is an important
micronutrient for the immune system as playing a role in immune response (Z.
Huang et al., 2018). Vitamin A is important for pneumonia treatments and it can be
an anti-SARS-CoV-2 regimen (R. Li et al., 2020). For these reasons, the

Micronutrient Deficiency parameter set (Figure 2.1) includes the parameters: vitamin
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D levels, vitamin A levels, zinc levels, and iodine levels of the countries (Figure 2.1).

For resources of the data of parameters, see Appendix B.

Population Parameters: Population size and the median age is related to COVID-
19 spread (Lulbadda et al., 2021). It is also known that air pollution increases the
risk of COVID-19 fatality (Ali & Islam, 2020). Outdoor air pollution deaths (Cohen
et al., 2005) and indoor air pollution deaths (Rehfuess et al., 2006) are other death
rates for air pollution in a population. These three categories of death numbers -
outdoor air pollution deaths, indoor air pollution deaths, and COVID-19 deaths- are
counted as the population death parameter due to their strong relatedness to the
pollution. Urbanization is another factor that is related to COVID-19 (Connolly et
al., 2020; P. Li et al., 2020). For these reasons, the Population Parameters parameter
set (Figure 2.1) includes population size, population growth type, urbanization
percent, indoor air pollution deaths, outdoor air pollution deaths, and COVID-19
mortality deaths of the countries (Figure 2.1). For resources of the data of parameters,

see Appendix B.

2.2 Data

The data used in the analysis were gathered from the data sources and collected in
tables for further analysis. For the data resources and details about parameters, see

Appendix B.

221 Data of countries

The CoVariants section of the GISAID database was used to obtain data of city
populations that are related to different mutants of Spike protein and variants of
SARS-CoV-2. In this section, 58 countries were found with related information (See

Appendix A). 56 of 58 countries that have the relevant variant and mutant data were
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selected for further analysis (Figure 2.2). The Caribbean island countries, Bonaire
and Curacao were blinded because the information of these countries in the

parameter data set was mostly missing.

[l soulh Ameiico
W North Amerea

Figure 2.2. The geographical distribution of the selected countries for the analysis
from the GISAID database.

2.2.2 Data of parameters

An Excel file containing the data of all members of the parameter sets for the selected
countries and the country names was created as a table (see Appendix A). Each data
column includes data from a single data source -only one web page or database- to
provide consistency among data sets for the countries. If the data is unavailable in
these sources the entry about this data was settled as NULL. For detailed information

about the data resources, see Appendix B.

2.2.3 Data of SARS-CoV-2 variants and Spike protein mutant types

The CoVariants / Per Variant section of the GISAID database was used to obtain

mutant and variant data of city populations (see Appendix A for more information
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about the GISAID database). An Excel file containing the data of all mutants and
variants on the GISAID database for the selected countries and the country names
was created as a table (see Appendix C “Data Table” for the data table of mutants
and variants). The maximum frequency of mutants and variants for each country was
used as data in this table. Also, a table that contains time interval frequencies for

each mutant and variant type was formed for the countries (see Appendix D).

2.2.4 Microbiome data

As microbiota data, bacterial distribution of gut microbiota in Mobeen's 2018 study
(Mobeen et al., 2018) was used for seven countries (Indonesia, India, Japan, Sweden,
USA, ltaly, Spain) for Set 3 Analysis.

2.3  Analysis

Each data set was analyzed in itself. According to the results, the next data set was
analyzed. Two kinds of regression analyses were used with SPSS in the first two sets
of analyzes since the data was big enough and has no overfitting problem. Logistic
regression analysis was performed with probabilistic programming (WebPPL) in the
third set of analyses since the data was small and caused an overfitting problem in
SPSS.

Math model: Relations between the variables can be measured by regression analysis
and associations between the variables can be measured by correlation analysis.
There are numerous regression analysis models, and the model should be selected
based on the distribution of the type of the response variable. Linear regression
models are based on linear equations to produce the results whereas logistic
regression uses odds ratios of the independent variables to produce output
(Alexopoulos EC, 2005). For a multi-linear regression model, there must be 10 cases
(data entry) for each independent variable (Rodriguez del Aguila & Benitez-Parejo,

2011). Confidence intervals (in this study, p-values) are used to represent the
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statistical errors in the statistical analyses, in other words, they show how reliable
the results are. 0.05 p-value represents the repeatability of the study is 95 %

(Alexopoulos EC, 2005). The equation for multi-linear regression (Yale, n.d.)
yi=0+1xil+2xi2 +...pxip+ifori=1,2,..n.

(0,1, .., pof the population regression line, n for observations, x for independent

variables, and y for dependent variables).

Model selection: In the Set 3 analysis, a logistic regression analysis was performed
with the parameter selection model. The parameter selection model is an important
model for data analysis (Mohamad et al., 2020). Parameter selection models are used
in many areas such as in global sensitivity analysis (Yuan et al., 2019) and smooth
functions (Wood et al., 2016). Wrong parameter selections can cause wrong results
to evaluate relations among dependent variables and independent variables
(Mohamad et al., 2020). Parameter selection is also a very important task in
biological modeling since the selection of model parameters is crucial for measuring
biological observations (Lillacci & Khammash, 2010). Since the main question of
this study is deciding whether there is a relation between SARS-CoV-2 mutants and
variants (dependent variables) and bacterial microbiome contents of gut
(independent variables), the parameter selection model was used as the model to
investigate the relationship between selected variables. The parameter selection
model was coded via WebPPL, and logistic regression analysis was embedded in the
model to investigate the relationship between dependent variables and independent

variables. For the code, see Appendix E.

Bayesian Approach: In set 3 analyses, the analysis was performed with a bayesian
approach, not a frequentist approach. In set 3 analyses, analysis was performed with
a bayesian approach, not a frequentist approach. The traditional understanding, the
frequentist approach, was used in the set 1 and set 2 analyzes. Both of these
approaches -Bayesian and frequentist statistics- are used to calculate probability, but
there are fundamental differences in their interpretation of probability. Frequentist

approaches assumes that the parameters are fixed and data is uncertain- whereas the
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Bayesian approach assumes that the parameters are uncertain and the data is known
(Bland & Altman, 1998). Bayesian approaches are beneficial when data is limited as
they can incorporate prior knowledge about the parameters (Bland & Altman, 1998).
The choice of approach is closely related to the appropriate design and parameter
selection. For example, the preference for the Bayesian approach has increased
recently in late-phase clinical trials (Stallard et al., 2020). The Bayesian approach is
based on the principle of updating an antecedent belief with each new data or new
observation, and it is not necessary to repeat the event/experiment in obtaining the
probability result (as probability density) (Aitchison, 1964). However, the
frequentist approach is based on the principle of repeatability of the event to obtain
the result, that is, it obtains the probability result with the repeatability of the same
event (Aitchison, 1964).

Bayesian Logistic Regression: Logistic regression is used as a linear classifier and
has a grouping approach (Srihari, n.d.). Bayesian logistic regression uses a Bayesian
approach instead of the classical maximum likelihood methods used in logistic
regressions, and this inference model is important for specifying explanatory
variables (X. Huang, 2010). Logistic regression analysis is an analysis that aims to
get the posterior distribution about the probability of an event and is closely related
to Monte Carlo diagrams (Van Erp & Van Gelder, 2013). After determining the prior
regression coefficients, the most direct way to apply Bayesian logistic regression is
to simulate - infer - the model with the Markov Chain Monte Carlo (MCMC)
algorithm (Bayesball, n.d.-b). It is a computational technique used in MCMC Bayes
inferences to generate random samples and find a sequence among these samples. In
this study, the MCMC algorithm was used as an inference algorithm in the logistic
regression model. Especially with very limited prior information about regression
parameters, it is often preferable to include Bayesian thinking in the model
(Bayesball, n.d.-a). In the case of Set 3 analyzes in this study, the Bayesian Logistic
Regression model was used, since it has a limited dataset (a limited a priori

microbiota-mutant type dataset for only seven countries).
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Stepwise Method: In the multilinear regression method, a linear equation is created
about how more than one variable can explain a dependent variable. In this study,
classical multi-linear regression analysis was performed with the enter method in
SPSS, and the most reasonable equation was tried to be reached with the Stepwise
method. The stepwise method is a method used to reach the highest value of the
regression equation. It looks at the biggest partial correlation to construct the
regression equation, not the biggest correlation between the independent variable and
dependent variable and tries to reach the highest regression result step by step by
creating a separate equation for adding each independent variable to the previous
equation (Johnsson T, 1992).

231 Softwares

IBM SPSS Statistics version 26 was used for Set 1 and Set 2 analyses for multiple
linear regression analysis and bivariate correlation analysis. The missing value
analysis was performed for parameters with missing data. The mean of the series was
used for those whose significant value was greater than 0.05 in missing value
analysis, and thus new parameter sets were created by transferring missing values.

Analyzes were made with these new parameter sets.

Since the data set is too small in Set 3 analyzes, deterministic programming tools
cannot give the desired results. WebPPL ( http://webppl.org/ ), which is a JavaScript-

based language and developed by cognitive scientists, suitable for small data sets

with high expressive power, was used in Set 3 analyzes.

2.3.2 Set 1 analysis

First of all, missing value analysis was performed in SPSS and missing values for
countries were detected in parameter values. It was checked whether the blank
answers were randomly distributed. According to the results of the analysis, it was

assumed that the values with significance values of the EM mean values greater than
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0.05 were randomly distributed, and the null values resulting in this way were
assigned with the replace missing value assignment in SPSS via the series mean
method. The resulting values were used as SMEAN values in Set-1 and Set-2
analysis. Later, all variables were standardized. For this, new standardized variables
(Zvariable) whose Z-scores (to represent the deviations) were obtained using the
standardization method in the Descriptive option in SPSS. These standardized values
were used in the analyses. Multi-linear regression and stepwise regression were used
for set-1 analyses. For each subgroup parameter, both step-wise and multi-linear
regression analyzes were performed. In addition, stepwise regression analysis
including all independent parameters was performed. While independent variables
in these analyzes were variables in parameter sets, COVID-19 fatality and COVID-
19 reproduction rate values were used as dependent variables. For the data of

dependent variables, see Appendix A.

2.3.3 Set 2 analysis

Stepwise regression was used for set-2 analysis. Stepwise regression analysis
including all independent parameters was performed. While the independent
variables in these analyzes were the variables in the parameter sets, the frequency
values of each mutant type were used as the dependent variables. For the data of

dependent variables, see Appendix C.

2.3.4 Set 3 analysis

In Set 3 analyzes, logistic regression analyzes for the variants and mutants
(dependent variables) obtained from Set 2 analyzes were performed using WebPPL
(See Appendix E). Microbiome data was used for independent variables for the
selected seven countries (Indonesia, India, Japan, Sweden, USA, Italy, Spain)
(Mobeen et al., 2018). These countries were selected since they were both in the

GISIAD database which means the parameter data was available for them (see
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Appendix A and Appendix B)- in the microbiome study (Mobeen et al., 2018). In
other words, for these seven countries, the data is available for both the microbiome

content of the countries and Set 1 and Set 2 analyses results.

2.4  Testing hypotheses

As each group of analysis was dependent on the previous one, the hypotheses (Table
1.1.) for each set of analyses were constructed based on data from the previous
analysis’ result (the result of Set-1, the result of Set-2). A small algorithm was
created for hypothesis testing and the process was controlled and managed with this
algorithm (Figure 2.3).

n. Hypotesis 4
the process continues
until the hypotheses are over

Disruption of the
analysis

One or more
significant result is

Disruption of the
found

analysis

~——

[ (n+1) Hypothesis

Figure 2.3. Representation of hypotheses testing process as a flowchart.
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CHAPTER 3

RESULTS

The calculations were two-tailed. All calculations that were included in this study as
results are accessible as the SPSS reports and WebPPL data, codes, and results in the
link:

https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu TlhxzsyjnXgaasP?us
p=sharing

Adjusted R2 results were used for multiple linear regression.

3.1 Set 1 results

Hypothesis 1 (H1): One of the following parameters can explain COVID-19 death
and reproduction rates: Diet, diseases, economical parameters, environmental

factors, micronutrient deficiencies, population parameters.

Set 1 analyzes were performed for Hypothesis 1. Multiple linear regression was
calculated to predict fatality based on the economy. A regression equation was found
(F(5,49)=6,980.,p<.000), with an adjusted R2 of .356. Therefore H1 cannot be
rejected (Table 1.1). Multiple linear regression was calculated to predict
reproduction based on population. A regression equation was found
(F(5,49)=6,162.,p<.000), with an adjusted R2 of .323. Apart from these, no
meaningful regression relationship was found. For the regression tables, See
Appendix H. In addition to these, correlations between economic variables and
fatality; and correlations between population parameters and reproduction were
investigated. Some correlations were found between the dependent and independent
variables (Table 3.1). To see the correlation matrix for each dependent variable, see

Appendix 1.
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Table 3.1 Multi-linear regression analysis results of the dependent and independent
variables. After regression analysis, correlation analyses were done between each
variable in the parameter sets and related dependent variables. Resulted in significant

correlations are shown below.

Predictor Predicted Multi-lineer  Correlated
values value regression variables
Population Covid-19 Adjusted Population size vs Covid-
parameters reproduction R 19 reproduction rate: Pearson =
rate Square = 0.307**, & Spearman = NSR;
0.323

Deaths by indoor air pollution rates vs Covid-
19 reproduction rate: Pearson = NSR
& Spearman = - 0.295**

Economy Covid-19 Adjusted SMEAN(GDP) vs Covid-
parameters fatality R 19 fatality rate: Pearson =
rate Square = 0.356 - 0.360* & Spearman = - 0.369%;

SMEAN(Gini index) vs Covid-
19 fatality rate: Pearson =
0.350* & Spearman = NSR,;

SMEAN(Conflict cases) vs Covid-
19 fatality rate: Pearson =
0.483* & Spearman = NSR

NSR = Non-significant result; *Significant in 0.01 level, **Significant in 0.05 level.
SMEAN(variable) = The missing values of the data were detected by missing value analysis in
SPSS, the significance of EM means was bigger than 0.05, therefore SMEAN variables were
created by replacing missing values by using the series mean of the data. The created SMEAN
variables were used in the multi-linear regression analysis. All variables were standardized to analyze.

3.2 Set 2 results

Hypothesis 2 (H2): One of the following parameters can explain SARS-CoV-2
infectivity between variants and specific mutations on Spike protein: Diet, diseases,
economical parameters, environmental factors, micronutrient deficiencies,

population parameters.

40



Set 2 analyzes were performed because it was suggested that Spike protein mutants
and SARS-CoV-2 variants could also be affected by selected parameters (Figure 2.1)
such as fatality and reproduction (Appendix H). As a result of the analysis, it was
found that the 20 variants and mutants were affected by various parameters.
Therefore H2 cannot be rejected. See the link:

https://drive.gooqgle.com/drive/folders/1paPEhtOng3zS3Azu TlhxzsyjnXqgaasP?us

p=sharing for the result of SET-2 analyses.

3.3 Set 3 results

Hypothesis 3 (H3): Microbes residing gut can explain which SARS-CoV-2 mutant
infected the host.

Set 1 and Set 2 analyzes were analyzed with a program (SPSS) due to the sufficient
data set size. However, in the hypothesis testing process, the data were generally
eliminated at each stage and the data sets were getting smaller; therefore, SPSS and
deterministic programming languages were insufficient to analyze the data of Set 3.
Therefore, the analyzes were made in the WebPPL by using Bayesian Logistic

Regression for Set 3.

In Set 3 analyzes, 20 variants and mutants regressed with different parameters. All
the results of Set-2 can be seen in the link:

https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu TlhxzsyjnXgaasP?us

p=sharing. These mutants and variants were used in Set-3 analyses.

For seven countries (Indonesia, India, Japan, Sweden, USA, lItaly, Spain), gut
microbe (Bacteroides, Firmicutes, Actinobacteria, and Proteobacteria) relative
abundances were analyzed as independent variables, and the percent frequencies of
selected mutants and variants were analyzed as a dependent variable (see Appendix
C) by logistic regression model in WebPPL (see Appendix E). Appendix E provides
the positive results of the Set-3 analysis. To see all the analyses codes, data, and

results for 20 variants and mutants check:
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https://drive.gooqgle.com/drive/folders/1paPEhtOng3zS3Azu TlhxzsyjnXqgaasP?us

p=sharing. The logistic regression analysis was embedded in the parameter selection
model and it was examined whether the percentage of each bacterium affected the
mutant and variant frequency (see Appendix E for the model and code and Appendix
C for variant frequencies). For analysis code and each positive result of the

combinations of dependent and independent variables, see Appendix E.
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CHAPTER 4

DISCUSSION

In this study, the relationship between Spike protein mutants and intestinal bacteria
was investigated by Bayesian logistic regression. It aims to investigate whether the
gut microbes can be selective parameters for SARS-CoV-2 mutants and Spike
protein variants in humans. To inquire this question, the hypotheses (Table 1.1) were
tested with a serial algorithm (Figure 2.3).

Firstly, the relationship between COVID-19 (fatality rate and reproduction rate,
Figure 2.1) and a set of parameters (Diet, Diseases, Environmental factors, Economic
parameters, Micronutrient Deficiencies, and Population parameters, Figure 2.1) was
tested with multi-linear regression analysis, both with the stepwise method and enter
method and bivariate correlation analysis in SPSS for Set 1 analysis process
(Appendix A). After Set 1 analysis, the second step of the analysis process (Set 2)
was made by using SPSS with multi-linear regression analysis, both with the
stepwise method and enter method, and bivariate correlation analysis for the set of
parameters (Diet, Diseases, Environmental factors, Economic parameters,
Micronutrient Deficiencies, Population parameters, Figure 2.1) and SARS-CoV-2
variants and Spike protein mutants that were taken in GISAID database (Appendix
C). Lastly, resulted in variants of SARS-CoV-2 and resulted in mutants of Spike
protein were analyzed by WebPPL with Bayesian logistic regression analysis that
was embedded in a parameter selection model (Appendix E) to see whether there are
relationships between SARS-CoV-2 variants, and Spike protein mutants and human

gut microbes.

In Set 1 results, the COVID-19 fatality rate (dependent variable) was related to
economic parameters. The effort for constructing a linkage between the biological

processes with the socio-economic process is common in many disciplines such as
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socio-biology (Hirshleifer, 1978) and urban ecology (Grimm et al., 2008b). The
results of Set 1 analysis for COVID-19 fatality rate support these efforts by giving a
piece of evidence for showing that the economic parameters can be related to
COVID-19 deaths. Economic parameters set include the independent variables of
conflict levels, GDP, GINI index, tax rates, and household type of the countries
(Figure 2.1). The relatedness of COVID-19 cases and COVID-19 fatality rates with
conflict cases (Bloem & Salemi, 2021), income inequality (Elgar et al., 2020), and
socio-economic stratifications (Mikolai et al., 2020) were investigated in the
literature. In addition to the COVID-19 fatality rate, the COVID-19 reproduction rate
(dependent variable) was related to population. It is known that the spread of SARS-
CoV-2 is dependent on population structure such as population size and the median
age of the population (Lulbadda et al., 2021) and the results of Set 1/COVID-19
reproduction rate is relevant to these results. Population Parameters parameter set
(Figure 2.1) includes the independent variables of population size, population growth
type, urbanization percent, indoor and outdoor air pollution deaths, and COVID-19
mortality deaths of the countries (Figure 2.1). In this parameters set, the COVID-19
reproduction rate was correlated with the single parameters of population size and
indoor deaths. The correlation between population size and COVID-19 reproduction

rate is consistent with previous results in the literature (Lulbadda et al., 2021).

Secondly, in Set 2 results, many variants (dependent variable) were related to diet,
diseases, economic parameters, environmental factors, and population parameters
via various rates. Variants also show various relationships between parameters in the
literature. For instance, the 201/501Y.V1 variant emerged in the United Kingdom
and spread throughout to world (To & Editor, 2021). This variant was found majorly
in Europe (Figure 4.1). In human reconstituted bronchial epithelium, the
201/501Y.V1 variant replicates furiously and due to this reason, it spreads rapidly
(Touret et al., 1207). The dietary intake affects the human ACE2 receptor, the main
target of the Spike protein, by affecting gene expression (Bhattacharya et al., 2021;
Horne & Vohl, 2020). Therefore changing the ACE2 structure by dietary patterns

can be linked with the results of Set 2. Moreover, chronic diseases are related to
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SARS-CoV-2 cases and their severity (H. Liu et al., 2020). The Chronic diseases
problem is a big issue for Europe since they have a long life expectancy comparing
to the other countries in the world. The average age of Europe is also increasing;
therefore, the financial supply of the treatments of chronic diseases is a problem for
European countries (Brennan et al., 2017). Therefore, the regression relation with
the results can be linked with the emergence of the variants in Europe. Itisa known
fact that SARS-CoV-2 is related to the economy (Bloem & Salemi, 2021; Elgar et
al., 2020; Mikolai et al., 2020), environmental conditions (Asyary & Veruswati,
2020; Travaglio et al., 2021; Xie & Zhu, 2020) and population structure (Connolly
etal., 2020; Lulbadda et al., 2021). Therefore, the regression relation with the results
can be linked with the various factors that are found in Set 2.

(Bt

Figure 4.1. The distribution of the 201/501Y.V1 variant (GISAID database).

For the results of mutant types in Set 2 results, it can be said that environmental
factors and economic parameters parameter sets are common. It is in the receptor-
binding domain (RBD) of Spike protein; therefore, it is important for both antibody
recognition and ACE-2 binding (GISAID, 2021c) S:E484 mutant caused a re-
infection in Salvador, one of the big cities of Brazil (Nonaka et al., 2021). Salvador
was the first capital of Brazil, and it promotes tourism events (Nobre, 2002) that
remarkably increase the air pollution levels (Vianna et al., 2018). Salvador is a
coastal city that experiences many beach pollution problems, such as pellet pollution
on the beaches (Fernandino et al., 2015). Salvador also has a garbage disposal
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problem in its nearby areas, which increases the susceptibility to diarrheal diseases
(Rego et al., 2005). Therefore, the toxicity relation of mutants is consistent with these
problems. In addition, many mutants can be related to different parameters, for
instance, S:Y144 mutation is another Spike protein mutation that is found in
201/501Y.V1 and other circulating variants, and this mutant are related to antibody
escape (Figure 4.3), (GISAID, 2021e). This mutant is related to viral shedding in a
patient in Washington (Avanzato et al., 2020) which is one of the biggest
metropolises of the United States. This city experiences deaths from increasing heat
and excessive 0zone concentrations (Jackson et al., 2010). Another example is that,
S:H69 is a deletion in Spike, which was sequenced mostly in Europe (Figure 4.4),
(Bal et al., 2021). This mutant occurs with other mutants and also has an example of
immuno-escape as S:Y144 (GISAID, 2021d). In addition, S:Y144 showed an
antibody escape in a lymphoma patient (Avanzato et al., 2020), and S:H69 occurred
in a chronically infected immunosuppressed patient treated with rituximab
monoclonal antibodies (GISAID, 2021d). It can be pointed out that even there is a
treatment with antibodies, this mutant can escape from it. Moreover, economical
parameters are related to many of the mutants and variants. This situation can be
caused by the relation between the economy and infectious diseases (Goenka et al.,
2014). Micronutrient deficiency is another parameter that mutants and variants were
related with various rates. It is known that micronutrient deficiencies are related to
many diseases (Shenkin, 2006) and population parameters that are caused by
demographic, social, and economic aspects of the population (Hwalla et al., 2017).
This can be due to the reason that micronutrient deficiency is highly related to
economic growth and population  dynamics (Darnton-Hill et al., 2005).
Micronutrients are essential molecules that provide many functions to the body and
play roles in maintaining homeostasis (Shenkin, 2006). Economic parameters are the
shared parameter set of many of the mutants and variants. This can be due to the
strong relationship between economic activities and viral diseases (Adda, 2016). In
this study, it is suggested that these distributions of mutants are related to host-

microbiome content (Table 1.1). Therefore, the results of the Set 2 analysis are a kind
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of verification that different parameters affect SARS-CoV-2 variants and Spike
protein mutants. The verified mutants and the variant that are affected by various
were used in Set 3 analysis to see whether there were some relations between them

and gut microbes.
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Figure 4.2. Global distribution of S:E484 mutant. Colors represent different
countries (GISAID).
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Figure 4.3. Global distribution of S:Y144- mutant. Colors represent different
countries (GISAID).
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Figure 4.4. Global distribution of S:H69- mutant. Colors represent different
countries (GISAID).

Set-3 probability results were very small and therefore only positive results were
concerned. In Set-3 results, it was seen that bacteria gave positive regression results
at different rates with variants and mutants obtained from Set-2 tests. Actinobacteria
is the keystone organism in the gut microbiota (Trosvik & de Muinck, 2015). It can
also be argued that variants and mutants that cannot be related to Proteobacteria can
be independent of functional diversity in gut microbes, by showing no relation with
Proteobacteria. This can be caused by that Proteobacteria are the bacteria responsible
for the functional diversity in the intestine. (Bradley & Pollard, 2017). In addition,
the higher rate of association between Actionobacter can be related to the high use
of probiotic supplements, that improve the intestinal microbiota, in Europe (Nils-
Gerrit Wunsch, 2021). Since Firmicutes and Bacteroides are the dominant organisms
in the gut microbiome and they provide the majority of ecological relations of human
gut microbiota (Bradley & Pollard, 2017), it might be possible that such mutants
with high antibody escape rates (GISAID, 2021d, 2021e) would escape more from
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the host immune defense depending on the contents of these species, since these
species are related with an immune response (Donaldson et al., 2018; Kosiewicz et
al., 2011; Peterson et al., 2015). Despite all this, the results of the set-3 analysis are
too weak to establish a relationship between bacteria and mutants, and further studies

are required to confirm these relationships.

Probabilistic programming languages (PPLs) are used in many areas such as
cognitive science, statistics, economy, electronics, environmental modeling, and
biology (A. D. Gordon et al., 2014; Krapu & Borsuk, 2019). Phylogenetic analysis
is another area to use PPLs (Ronquist et al., 2021). PPLs can infer patterns from data
(Gutmann et al., 2011; Merrell & Gitter, 2020). Virology is another area that PPLs
are used (Topfer et al., 2013). PPLs are diverse to make various applications in
different areas; for instance, STAN is mainly used by statisticians and (Carpenter et
al., 2017) WebPPL which is a feature-rich language that was generated from
JavaScript (Ouyang et al., 2018). Although PPLs have some limitations (Gutmann
et al., 2011), they made inferences that deterministic programming tools cannot do.
In this study, WebPPL was used because of its expressive power on small data sets
(Ouyang et al., 2018). Since our dataset in Set 3 analysis was quite small to infer
relations between variables in deterministic programs, WebPPL was selected for
analysis. The probability results of Set 3 analyses were rather small (Appendix E),
but, it can be related to a very small dataset (data of seven countries). Even in a small
dataset like this, WebPPL made inferences and give positive and negative relation

results.

This study had some limitations. First of all, large datasets were needed to ensure
integrity, as data obtained from many different grounds had to be brought together
as a whole (Appendix A & Appendix B & Appendix C). This situation may have
caused that parameters stand more important in the analysis process compared to
others in this data set to be overlooked. Moreover, each analysis process was
designed to use the data of another which means that the data was lost in each
forthcoming analysis. This data loss and a large number of parameters caused
overfitting problems in the outputs. Additionally, as the disciplines of urban ecology
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and microbial metacommunity (Miller et al., 2018), which are the theoretical grounds
on which this study is based, are the areas that newly reconstructed, there might be
various gaps between theoretical and practical applications (Grimm et al., 2008b).
Despite the large data sets, the missing data problem was observed intensely in some
parameters, such as diseases and micronutrients in Set 1 analyses, that would affect
the targeted results in the analysis. Examples such as the lack of sufficient data set
to measure microbial interactions, insufficient data on geographic microbial
distributions (Mobeen et al., 2018), insufficient data for the countries to be analyzed
for vitamin D levels (Appendix A, Appendix B), disease data containing different
missing values for each country (Appendix A), and the lack of a clinical study in the

area, can be listed as an example of this situation.

SARS-CoV-2 is in a very advantageous position against other viruses in terms of
both clinical data and the traceability of its mutants around the world (Petrosillo et
al., 2020). However, it may be necessary to establish a control group for this study
to study the viral mutant-microbiota relationship in detail and meaningfully.
However, in the sense of in silico analysis, data that can be associated, such as the
relationship of COVID-19 with human factors, could not be found for other viruses,
and the comparison data are mostly on the axis of clinical data. Researchers who
want to investigate the viral mutant-microbiota relationship in more detail may be

recommended to try to establish a comparable control group for the virus.

Further analyzes were not used in the set 1 and set 2 analyzes, and after each
validation, the next hypothesis was moved, as the main goal of the study was to point
out a possibility in the microbiota analysis in part 3 -the gut microbiota may show
different tolerances to different mutants- by making some validations in the first two

sets of analyses.

Understanding microbiota in terms of composition, diversity, and function is being
studied, and functional contribution rather than species is thought to be important for
establishing microbiota composition. Ecological microbiota studies seek to

understand specific gut microbiota functions in pathways of host-microbiome
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interactions. In studies of divergence of the microbes in the microbiota, it is known
that there is a great deal of species diversity at the species level among humans.
Functional diversity studies look at a specific gene and the function performed by
certain microbial compositions, because of the idea of forming a microbiota
community based on the work performed within that microbial ecosystem rather than
at the species level. Although the microbial composition varies greatly between
individuals in terms of species diversity, it has been observed that there are not very
serious differences between individuals in terms of functionality, in other words, the
functional diversity of the human microbiome has been very conserved among
people since the core functions in the microbiota have very important places in the
metabolic pathways of the host (Lozupone et al., 2012). It is known that some phyla
variations are associated with various diseases, especially in the intestinal microbiota
(Rinninella et al., 2019).

It is known that some phyla variations are associated with various diseases,
especially in the intestinal microbiota. However, in some cases, variations not
detected at the phylum level but detected at the species level are also known to affect
host status (Wakita et al., 2018)In this study, the geographic variations achieved are
at the phylum level, and two dominant phylums (Bacteroidetes and Firmicutes), one
keystone phylum (Actionobacter) and one phylum that influence the functional
diversification of the microbiome (Proteobacter) were used. This is a limitation of
this study because only phylum level analysis was possible, but analysis at other
levels, such as species or family, may be related to different host-metabolic factors
and functions. For this reason, researchers who want to work on this subject should

also consider the functional effects at different levels.

The existence of a crosstalk system between the gut and lung (Srinath et al., 2020)
may also suggest that different respiratory viral mutants may affect transmission,
virulence, and immune response of the host, as different compositions of microbiota,
are known to affect crosstalk networks, although the results of this study do not
conclusively point to this relationship. Since Lung microbiota studies are usually
performed in laboratory environments isolated from the organism (Tulic M C, Piche
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T, 2016), it may be necessary to conduct and investigate such studies at the

organismal level.

As a result of the set 3 analyzes, it was seen that some mutants and variants gave
positive regression results with various bacteria in the gut microbiota, out of a total
of 20 mutants/variants. Due to the very small size of the dataset, only a positive
probabilistic result was taken into account when evaluating the results. Datasets,
logistic regression code, and results are available in Appendix E. This study looked
at whether mutants regressed positively with different bacteria and some positive
results were obtained, but the dataset is very small. Therefore, studies involving more
data should be conducted to support hypothesis 3. In addition, both clinical data and
results from laboratory experiments are needed to study microbiota and different
mutant relationships. This study proposes a method for verifying a hypothesis that is
difficult to obtain from a small data set with a deterministic probabilistic approach
using Bayesian logistic regression. Different datasets and different models can
explore this issue better.

The data in the Set 3 analyzes are very limited, the models are too simple, and the
data for the 7 countries may not be a complete representation of the countries because
these data are the average of the whole country as a result of a limited study, and
there is no data to show the differences between countries and within the country
itself. Even if these reasons preclude constructing credibility about the set 3 results,
however, there may still be a possibility that different microbiota may be a factor in
the selection of different mutants and variants due to the approach of Bayesian

logistic regression in interpreting this limited data set.

When the data of this study were taken from the GISAID database, there were 3-
time intervals. Time intervals were thought to be related to transmission virulence
and immune response of the virus, and analyzes were also performed for time
intervals and parameters. However, since a significant result could not be obtained,

the results were not included in this study because a meaningful regression or
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correlation relationship could not be detected between any interval and any

parameter set.
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CHAPTER 5

CONCLUSION

In this study, it was investigated that whether there is a relationship between Spike
protein mutations of SARS-CoV-2 and gut bacteria in humans. According to the
results gained by using Bayesian Logistic Regression in WebPPL, a probabilistic
programming language, it has been inferred that the toleration of specific human gut
microbiota compositions for SARS-CoV-2 Spike proteins varies. While the results
obtained are likely very small, this research suggests that there may be meaningful
associations between gut bacteria and viral mutants if studied with clinical studies
and larger datasets. Although it was not analyzed in detail because of the problem of
small data, the results can give an insight for the researchers to develop protective

treatments against pathogens by enhancing the host microbiome.
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APPENDICES

A. SET 1 DATA TABLE : PARAMETERS

COUNTRIES
ARUBA
AUSTRALIA
AUSTRIA
BANGLADESH
BELGIUM
BRAZIL
BULGARIA
CANADA
CHILE
CROATIA
CYPRUS
CZECHIA
DENMARK
ESTONIA
FINLAND
FRANCE
GERMANY
GHANA
GREECE
HUNGARY
ICELAND
INDIA
INDONESIA
IRELAND
ISRAEL

ITALY

JAPAN

KENYA
LATVIA
LITHUANIA
LUXEMBOURG
MALAWI
MEXICO
NETHERLANDS
NEW ZEALAND
NIGERIA
NORTH
MACEDONIA
NORWAY
POLAND
PORTUGUAL
QATAR
ROMANIA
RUSSIA
SINGAPORE
SLOVAKIA
SLOVENIA
SOUTH AFRICA
SOUTH KOREA
SPAIN
SWEDEN
SWITZERLAND
TURKEY
UGANDA

UK

USA
ZIMBABWE

GINI
GDP INDEX
29008 null

55057 34.40
50122 30.80
1856 32.40
46345 27.20
8717 53.40
9828 41.30
46190 33.30
14897 44.40
14944 29.70
27858 32.70
23490 25.00
60213 28.20
23718 30.30
48771 27.30
40496 32.40
46468 31.90
2202 43.50
19581 32.90
16730 29.60
67084 26.10
2100 35.70
4136 38.20
78799 31.40
43589 39.00
33226 35.90
40247 32.90
1817 40.80
17819 35.10
19551 35.70
114685 35.40
412 44.70
9946 45.40
52295 28.10
41558 NULL
2230 35.10

6022 33.00
75420 27.60
15695 30.20
23214 33.50
62088 NULL
12913 35.80
11585 37.50
65233 NULL
19266 25.00
25941 24.60

6001 63.00
31846 31.40
29565 34.70
51648 30.00
81989 33.10

9127 41.90

794 42.80
42329 35.10
65298 41.40

1464 50.30

CONFLICT

null
null

null

null

null
null

null

null
null

null

17
634
26
6658
31

777
12
20

30

252
230
115
173

3413
451
13
182
173

210

139
7650
101

2714

13
22
10

55

751
42
232
26

670
547
134
1015
69

TAX
RATES

HOUSEHOLD

BMI
null
64.50
54.30
20.00
59.50
56.50
61.70
64.10
63.10
59.60
59.10
62.30
55.40
55.80
57.90
59.50
56.80
32.00
62.30
61.60
59.10
19.70
28.20
60.60
64.30
58.50
27.20
25.50
57.80
59.60
58.70
23.40
64.90
57.80
65.60
28.90

58.10
58.30
58.30
57.50
71.70
57.70
57.10
31.80
56.20
56.10
53.80
30.30
61.60
56.40
54.30
66.80
22.40
63.70
67.90
38.20

75

VEGETABLE OIL
CONSUMPTION
null

23.40

15.50

7.00

11.30

19.90

10.00

25.90

7.90

8.10

15.80

14.80

1.70

7.70

6.20

17.40

14.40

6.30

17.00
15.80
7.00
15.20
null
14.70
14.90
null
16.10
8.10
13.00
18.60
28.20
7.50
20.30
18.00
8.20
13.10
19.50
"11.70

ANIMAL FAT
CONSUMPTION
null
5.70
15.80
0.20
17.10
4.20
3.40
15.20
2.50
4.00
0.40
15.20
22.90
9.20
11.90
14.10
12.60
0.20
3.10
15.10
18.60
0.00
0.40
15.30
1.80
5.50
1.00
1.10
22.20
"10.70
"9.70
1.00

20.50

0.50

SUGAR

CONSUMPTION

null
60.40
46.90
9.30
58.20
42.80
34.30
90.30
48.00
56.10
59.30
50.10
55.00
52.30
40.30
38.30
48.10
14.10
30.30
40.90
57.10
22.20
16.90
83.90
31.00
32,50
26.90
17.50
51.80
92.00
162.20
"10.80
49.60
44.90
56.20
11.10

49.70
43.90
44.30
37.80
null

28.40
76.70
null

70.20
48.10
43.80
38.60
33.20
48.70
49.20
31.80
12.10
37.80
66.20
33.30

UNDERNOURHSMENT

null

null

null

null

null

-
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ANTIBIOTIC RESISTANCE CANCER LUNG_CANCER ASTHMA COPD

null

null

null

null

null

null

null

null

null

null
null

null

null

null

null

null

null
null

null

null

null

null
35452.4
32 255.7

106.2

null
34.00
11.
3.308
10.100
6.020
6.280
25.05
7.328
10.218
5.300
12.328
27.80
7.650
8.07a
8.2201

0.40m

5.48%
15.80
13.59
5.350

v
4.20

"7.81
5.778

v
11.50

19.678
26.150
"5.80

null
10.71
5.33
2.75
4.66
4.88
3.43
5.77
5.03
3.91
5.55
3.26
5.70
2.65
6.19
6.55
6.55
2.71
5.28
3.28
8.83
2.48
5.26
7.92
5.54
3.67
4.60
3.37
3.93

~

N

N

34.5
143.2
141.9
null
190.6
273.8
100.8
164.3
153.3
131.4

PHEUMONIA
null
9.07

13.8:
13.360
91.628
19.82
16.402
7,
8.14
92.930
4

5.63
15.28
15.88
24.59
18.802
2169
17.73
41.85
20.23
12.248
62.16
17.682
10.178

"11.21

"7.89
13.36
78.81
24.11
15.88
137.63

NDC DIABET

null 11.62
15281 5.07
15492 6.35
21148 8.38
15967 4.29
19291 8.11
21449 5.81
15798 7.37
17125 8.46
17557 5.59
15129 9.24
16824 6.82
16824 6.41
18362 4.02
16031 5.76
14645 4.77
16561 8.31
22158 4.97
16276 4.55
19716 7.55
14841 5.31
22628 10.39
22613 6.32
15873 3.28
14465 6.74
14507 4.78
1271875.72
2046272.92
2102474.91
2086773.67
1612274.42
2187273.94
18853 13.06
1598575.29
16037 8.08
1972772.42

~

~

Al

N

~

N

19003 10.08
1549575.31
1797775.91
1566279.85
17278 16.52
2052079.74
2345476.18
11776710.99
1856177.29
1522977.25
1937475.52
1333476.80
1431277.17
15069 4.798
1418675.59
18402712.13
20819"2.50
1690874.28
19743710.79
24788"1.82

76

DIERRAL
DISEASES
null
0.43
0.49
30.02
2.380
3.460
0.42
1.950
1.758
0.42
1.250
1.25@
2.61
0.12
0.34
0.692
1.660
34.782
0.14
1.28
0.94
85.52@
46.02
0.53
2.15m
0.458
0.718
76.94
0.18
0.278
1.490
70.11
4.15
0.96

73.67

44,948

COLREACTAL

CANCER

null
null
128.6
null
125.7
23.6
77.1
86.6
311
117.6
null
149.8
136.2
null
84.2
117.8
156.2
null
71.1
152.8
null
6.3
17.8
97.6
93.3
1321
151.2
null
null
null
null
null
11.1
119.5
null
null

null
144.1
81.1
100.1
null
56.3
66.8
null
110.8
114.7

null
113.4
122.7
129.4

null
121.0
61.1
null

13.Eyl

DYSPENSIA
null
null
null
null
null
null
null
null
null
null
null
19.0
3.4
null
null
null
20.4
null
null
null
null
null
null
null
null
13.4
null
null
null
null
null
null

13.8
null
null

null
null
null
null
null
null
null

null
null
null
null
24.0
25.0
null

null
41.0
12.0
null

CONSTIPATION
null
30.7
null
null
null
null
20.6
16.7
null
null
null
13.0
null
null
null
22.4
null
null
null
null
null
null
null
null

ANEMIA
null
20.10
24.50
45.70
23.50
37.30
28.00
17.40
27.00
28.70



VITAMIN A
DEFFICIENCY
null
null
null
21.70
null
13.30
18.30
null
7.90
9.20
null
5.80
null
8.70
null
null
null
75.80
null
7.00
null
62.00
19.60
null
null
null
null
84.40
13.00
11.10
null
59.20
26.80
null
null
29.50

29.70
null
"9.30
null
null
16.20
14.10
null
"8.30
null
16.90
null
null
null
null
12.40
27.90
null
null
35.80

ZINC
DEFFICIENCY
null
3.80
7.40
29.70
6.80
7.30
15.30
8.00
5.70
12.40
6.10
11.00
6.20
10.50
4.60
3.90
9.00
21.60
7.20
8.40
3.10
31.20
31.20
4.00
5.50
5.80
6.40
25.30
11.60
7.50
3.60
40.60
16.90
8.00
"a.40
20.60

14.10
"6.20
"10.30
"6.30
33.40
"7.50
"8.30
5.40
6.30
"9.80
20.00
3.00
8.40
6.10
"4.90
21.70
20.50
"4.60
5.00
48.40

VITAMIN I10DINE
D LEVELS UPTAKE

null
70.2
9.5
null
56.4
52.4
null
67.7
null
null
null
58.2
255
43.7
42.9
61.0
45.2
null
42.9
null
46.1
36.4
null
37.1
55.1
39.9
59.1
null
null
null
null
null
null
53.2
39.8
52.7

null
67.2
33.5
null
null
null
29.1
null
null
null
37.0
46.1
52.7
95.0
50.0
null
null
56.2
70.4
null

null

null

null

null

null

null

null

null

null

null

null

null

null

null

104
111
126

80
360
198

984
140

119
61
65

164
85

148
54

80
150
133
229

82

94
118
59
75
148
235
154
66
130
228
84
203
102
93
183
177
109
141
75

464

249
245

SUNLIGHT
EXPOSURE

null

3206
1888
4029
1645
4552
2331

TEMPERATURE

null
21.65
6.35
25.00
9.55
24.95
@0.55

1887 85.35
3982 B.45

1976
3439
1707
1691
1781
1494
1907
1812
5166
2753
1932

957
4514

10.9
18.45
@.55
7.50
5.10
1.70
10.70
8.50
27.20
15.40
8.85
1.75
23.65

5220 25.85

1509
3682
2444
2521
5803
1671
1801
1687
5019
4974

8.30
19.20
@3.45
11.15
24.75
5.60
B8.20
B.65
21.90
21.00

16627 9.25
248771055

5251

2403

26.80

null

14397 1.50
174977.85

2585
4905
2071
1795
3979
1795

@5.15
@7.15
B.8
Bb.1
26.45
B8.80

2256 B.90

4111
2535
2705
1587

m7.75
m1.5
13.30
2.10

215875.50

2924
5499
1576
2736
4918

11.10
22.80
B.45
B.55
21.00

77

RAINFALL

null

AIR
TOXICTY
LEVELS
null
534 71
1110 null
2666 154
847 null
1761 124
608 11
537 34
1522 63
1113 65
498 null
677 12
703 null
626 null
536 26
867 38
700 28
1187 null
652 null
589 33
1940 null
1083 149
2702 70
1118 null
435 78
832 53
1668 70
630 null
667 null
656 null
934 null
1181 null
758 97
778 34
1732 null
1150 null
619 22
1414 16
600 35
854 null
74 null
637 null
460 75
2497 60
824 37
1162 null
495 112
1274 63
636 34
624 null
1537 17
593 null
1180 null
1220 20
715 75
657 null

GENERAL
TOXICTY
LEVELS
null
7.60
10.90
77.10
8.90
14.20
27.50
7.30
19.30
21.20
15.80
12.30
9.40
5.90
5.00
11.10
10.10
26.90
18.40
14.30
7.20
51.90
40.70
8.60
16.90
18.50
9.80
14.20
11.30
11.70
9.00
null
18.90

"9.70

7.00
null

30.60

"5.70

16.90
9.10

44.30
15.80

"9.30
"11.80

15.30
null

18.00
19.50

"10.40

5.00
9.00
18.70
26.10

"8.30
79.60

null

FOREST AREA
2.3
17.4
47.2
14.5
22.8
59.7
35.6
38.7
24.2
34.2
18.7
34.6
15.7
56.1
73.7
31.2
32.7
35.0
30.3
22.50
0.5
24.1
49.7
11.2
6.5
31.8
68.4
6.3
54.88
35.1
36.5
24.7
33.9
10.9
37.4
24.1

39.7
333
30.9
36.2
0.0

30.1
49.8
22.5
40.1
61.7
14.1
64.7
37.2
68.7
31.9
28.5
12.1
13.1
33.9
45.3



COVID19 COVID19
FATALITY REPRODUCTION

RATE
null
3.05
1.65
1.53
2.44
2.77
4.09
1.94
2.19
2.16
0.48
1.80
0.98
0.95
1.05
1.84
2.42
0.84
3.05
3.57
0.45
1.09
2.74
1.96
0.76
3.00
1.70
1.74
1.79
1.58
1.18
3.37
9.25
1.13
0.99
"1.25
14

A TN BN BN I N |

N

N

3.27
0.66
"2.43
2.03
0.23
"2.69
"2.29
0.05
3.09
1.76
3.44
1.48
2.21
1.43
1.60
0.84
0.81
"2.88
"1.78
411

AN PR N |

PR

RATE
null
1.03
0.86
0.61
0.90
0.97

0.99
0.818
0.92
0.8602
1.092
0.86

0.57
0.840
0.59
0.890
0.89
0.660
1.00
"1.14
0.81
0.970
1.10
0.95
1.041
1.06
1.04
0.730
1.06
0.91
0.89
0.830

POPULATION  POPULATION

106310
25203199
8955108
163046173
11539326
211049518
7000116
37411038
18952035
4130299
1198573
10689213
5771876
1325649
5532159
65129730
83517046
30417857
10473452
9684679
339037
1366417755
270625567
4882498
8519373
60550092
126860299
52573967
1906740
2759631
615726
18628748
127575529
17097123
4783061
200963603

2083457
5378858
37887771
10226178
2832071
19364557
145872259
5804343
5457011
2078654
58558267
51225320
46736782
10036391
8591361
83429607
44269587
67530161
329064916
14645473
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URBANIZATION COVID19
SIZE GROWTH TYPE PERCENT

44
86
59
37
98
87
75
81
88
57
67
74
88
69
85
81
77
57
79
72
9
34
56
63
93
71
92
28
68
68
91
17
80
92
87
51

58
83
60
66
99
54
75
100
54
55
67
81
81
88
74
76
24
84
82
32

INDOOR AIR
POLLUTION
MORTALITY DEATHS

100 null
910 0.02
10311 0.07
11755 7.93
24367 0.09
411854 0.90
16609 1.43
24445 0.01
26726 0.61
7315 0.84
326 0.05
29479 0.19
2492 0.02
1183 0.75
918 0.03
105631 0.03
84482 0.06
780 4.85
10764 0.06
28173 1.32
29 0.04
230010 4.86
46349 4.15
4915 0.06
6370 0.04
122005 0.06
10470 0.01
282574.85
2166 0.63
3993 0.15
800 0.03
115175.90
21774071.65
17245 0.02
26 0.03
2063 4.06
y

5016 2.15
767 0.05
68482 0.61
16983 0.15
489 0.00
2861671.37
111895 0.02
31 0.01
11886 0.27
4279 037
54511 0.92
1847 0.00
78566 0.13
14151 0.05
10676 0.06
41527 0.09
34374.35
127570 0.06
592537 0.02
157475.93
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OUTDOOR AIR
POLLUTION
DEATHS
null
2.86
431
6.32
4.65
4.07
5.78
2.84
4.49
5.30
6.55
5.74
4.43
2.22
2.03
331
4.44
2.66
5.84
5.17
2.67
8.26
3.46
3.59
5.76
4.78
3.67
1.73
4.58
4.90
3.85
0.94
"5.25
"4.49
2.11
"3.19
¥

~

~

N

Al

~

~

N

6.64
2.78
5.71
3.72
9.29
4.47
5.43
6.69
5.74
4.31
4,09
"5.90
411
"2.44
"3.60
10.12
"1.54
4.08
"3.84
"1.79

N

~

Al

~

~

~

~

~

~

€02 EMISSIONS
8.72
16.88
7.89
0.50
8.71
233
6.69
15.59
4.55
4.48
6.37
9.93
6.06
14.13
8.11
5.33
9.52
0.47
7.08
5.11
10.82
1.84
2.01
8.19
7.58
"5.79
931
0.33
"3.70
"4.76
15.63
0.08
3.70
9.66
7.69
0.68
v

3.61
"8.23
"8.89
"5.32

38.74
"3.97
"11.31
"6.84

6.62
"6.87
"8.18
"2.15

5.89

4.27
"4.52

5.24

0.13

5.82

16.16

0.72

FOOD INSECURTY
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
0.49
null
null
null
null
null
null
null
null
null
"2.99
null
null
null
"2.99
null
null
null
"9.99

null
null
null
null
null
null
null
null
null
null
10.00
null
null
null
null
null
"2.99
null
null
"4.99



B. DATA RESOURCES

SUMMARY

These data were gathered from different sources such as literature sources or
publicly online databases. This document provides the references that provide the

data of the table content.

A wide range of the aspects of the countries (such as sociological, economic, e.g.)
that can have any impact on the survival of the specific variants, were included as
the attributes of the table.

Countries (city_name)
https://covariants.org/per-country
Number of total countries that are included in this database is 58.

Bonaire and Curacao were excluded in the study due to insufficient information on

the selected references.

56 countries with common Sars-CoV-2 variant data were included in the study.
These countries were selected for further analysis.

Countries that were used in this study by continents:

AFRICA: 1. Ghana 2. Kenya 3. Malawi 4. Nigeria 5. South Africa 6. Uganda 7.
Zimbabwe ASIA: 1. Cyprus 2. Turkey 3. Russia 4. Bangladesh 5. India 6.
Indonesia 7. Israel 8. Japan 9. Qatar 10. Singapore 11. South Korea AUSTRALIA:
1. Australia 2. New Zeland EUROPE: 1. Austria 2. Belgium 3. Bulgaria 4. Croatia
5. Czech Republic 6. Denmark 7. Estonia 8. Finland 9. France 10. Germany 11.
Greece 12. Hungary 13. Iceland 14. Ireland 15. Italy 16. Latvia 17. Lithuania 18.
Luxembourg 19. Netherlands 20. North Macedonia 21. Norway 22. Poland 23.
Portugual 24. Romania 25. Slovakia 26. Slovenia 27. Spain 28. Sweden 29.
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Switzerland 30. United Kingdom NORTH AMERICA: 1. Canada 2. USA 3.
Mexico SOUTH AMERICA: 1. Brazil 2. Chile 3. Aruba

Population Size (population_number)
https://www.populationpyramid.net/
Population pyramid (population_growth)

https://www.populationpyramid.net/

Positive Growth Zero Growth MNegative Growth
(expanding pogpalation) (stable population) (shiinking population)

Aale

type | typell type I

(figure source: https://www.ck12.org/biology/population-structure-
1501903452.12/lesson/Age-Sex-Structure-of-Populations-Advanced-B10-ADV/
last access time: 27.04.2021, 17:03)

GDP per capita (GDP)
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
Last entry (current) data was used.

The fractional numbers rounded to whole numbers.
Exposure to Solar UV Radiation (Sunligh_exposure)
https://apps.who.int/gho/data/view.main.35300

For the countries that have not any information about sunlight exposure in this
application, the information of the nearest country was used (for Aruba, Venezuela

used.)

Climate (temperature)
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https://worldpopulationreview.com/country-rankings/hottest-countries-in-the-world
Average temperature was used for representing climate.

Drug Resistance Index (antibiotic_use_freq)
https://resistancemap.cddep.org/DRI.php

Gini Index (income_inequality)

https://data.worldbank.org/indicator/SI.POV.GINI?name_desc=false&view=map&
year=2019

To estimate income inequality.
The fractional numbers rounded to whole numbers.
Corporate Tax Rates (tax_rates)

https://taxfounhttps://data.worldbank.org/indicator/SI.POV.GINI?name_desc=false
&view=map&year=2019dation.org/publications/corporate-tax-rates-around-the-

world/

The fractional numbers rounded to whole numbers.

Total Deaths due to COVID-19 (covid_19 mortality)
https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegasl?
COVID-19 recovery cases in number (covid_19 mortality)
https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?
COVID-19 Case Fatality Rate by % (covid_19 mortality freq)

https://ourworldindata.org/explorers/coronavirus-data-
explorer?tab=table&zoomToSelection=true&time=2020-03-
01..latest&pickerSort=asc&pickerMetric=location&Metric=Case+fatality+rate&Int
erval=Cumulative&Relative+to+Population=true&Align+outbreaks=false

COVID-19 Reproduction Rate (covid_19 reproduction)
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https://ourworldindata.org/explorers/coronavirus-data-
explorer?tab=table&zoomToSelection=true&time=2020-03-
01..l1atest&pickerSort=asc&pickerMetric=location&Metric=Reproduction+rate&Int
erval=7-
day+rolling+average&Relative+to+Population=true&Align+outbreaks=false&coun
try=USA~GBR~CAN~DEU~ITA~IND

Prevalence of Total Overweight Adults (overweight_adults)
https://apps.who.int/gho/data/view.main.CTRY 2430A?lang=en
Last entry (current) data was used (2016).

The fractional numbers rounded to whole numbers.
Consumption of the Vegetable Oil (consumption_veg_oil)
https://data.worldobesity.org/maps-obesity-day/?mapid=62

This database uses the data of the FAO (Food and Agriculture of the United
Nations : http://www.fao.org/faostat/en/#data/FBS ) and visualize the data.

The fractional numbers rounded to whole numbers.
Consumption of the Animal Fat (consumption_animal_fat)
https://data.worldobesity.org/maps-obesity-day/?mapid=61

This database uses the data of the FAO (Food and Agriculture of the United
Nations : http://www.fao.org/faostat/en/#data/FBS ) and visualize the data.

The fractional numbers rounded to whole numbers.
Consumption of Sugars (consumption_sugar)
https://data.worldobesity.org/maps-obesity-day/?mapid=67

This database uses the data of the FAO (Food and Agriculture of the United
Nations : http://www.fao.org/faostat/en/#data/FBS ) and visualize the data.
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The fractional numbers rounded to whole numbers.

Prevalence of undernourishment by percentage (under_nourishment)
https://data.worldbank.org/indicator/SN.ITK.DEFC.ZS

Conflict Cases (conflict)
https://acleddata.com/dashboard/#/dashboard

Total events (reported) were used.

Vegetation Index (forest_area)
https://data.worldbank.org/indicator/AG.LND.FRST.ZS

Forest Area is used for representing vegetation.

Average Precipitation (rainfall)
https://data.worldbank.org/indicator/AG.LND.PRCP.MM

IPC/CH (IPC/CH)

https://hungermap.wfp.org/

To class https://hungermap.wfp.org/ify food insecurity.

The upper bound of the color scheme is used as an integer in the DB.

The index in this database was used as a percentage (e.g. index 1 in this database
was used as 100 in the study).

The resulting fractional numbers rounded to whole numbers.

Anemia in pregnant women (anemia)
https://ourworldindata.org/grapher/anemia-pregnant-women-vs-children?tab=table
The fractional numbers rounded to whole numbers.

Global prevalence of Zinc Deficiency (zinc_defficiency)
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https://ourworldindata.org/grapher/global-prevalence-of-zinc-deficiency
Most recent data (2005) was used.

The fractional numbers rounded to whole numbers.

Prevalence of Vitamin A deficiency (vit_A_defficiency)

https://ourworldindata.org/grapher/prevalence-of-vitamin-a-deficiency-in-

children?tab=table

The fractional numbers rounded to whole numbers.

Vitamin D status Around the World (vit_D_defficiency)
https://www.osteoporosis.foundation/educational-hub/topic/vitamin-d
The fractional numbers rounded to whole numbers.

Average Household Size: Number of members (household_type)
https://population.un.org/Household/index.html#/countries/533
Urban Population as % of Total Population (open_closed_index)
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS

Indoor Air Pollution Deaths (indoor_deaths)

https://ourworldindata.org/indoor-air-pollution?country= (From table “Share of

Deaths From Indoor Air Pollution Percent”)
Outdoor Air Pollution Deaths (outdoor_deaths)

https://ourworldindata.org/outdoor-air-pollution (From table “Share of Deaths

From Outdoor Air Pollution Percent”)
CO2 Emissions (co2)
https://ourworldindata.org/co2-emissions (From “CO2 emissions per capita”)

Variant Name (variant_name)
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https://covariants.org/per-country

In the DB of https://covariants.org/per-country , there are 27 variants of the virus

that are related with the countries.

In our tables, the variants that are related with the selected countries were used.
Frequency (frequency)

https://covariants.org/per-country

The variant frequency of the countries.

The upper bound of the frequency data is used for each time interval.
Interpolated data that has no frequency was ignored.

Time Interval (time_interval)

https://covariants.org/per-country

There are three time intervals for dividing the viral circulation.

Categorization of the time intervals: interval_1: 0 - 2020/07/28, interval_2:
2020/07/28 - 2020/10/29, interval_3: 2020/10/29 - 2021/04/19.

Related Spike Mutations of the Variants (variant_has_mutations)
https://covariants.org/variants
Disease Statistics (disease_frequency)

CANCER (For All Types of Cancer): https://gco.iarc.fr/today/online-analysis-
map?v=2020&mode=population&mode_population=continents&population=900&
populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0
&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_it
ems=10&group_cancer=1&include_nmsc=1&include_nmsc_other=1&projection=
natural-
earth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=
0&show_ranking=0&rotate=%255B10%252C0%255D
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Lung Cancer: https://ourworldindata.org/grapher/lung-cancer-deaths-per-100000-
by-sex-1950-2002?tab=table

Asthma: https://ourworldindata.org/grapher/asthma-prevalence

COPD: https://statistics.blf.org.uk/copd (Number of Deaths by COPD per million

section).

Pneumonia: https://ourworldindata.org/grapher/pneumonia-death-rates-age-

standardized

NDCs (Non-communicable Diseases): https://ourworldindata.org/grapher/burden-
of-disease-rates-from-ncds?tab=table (to get more information about NDCs:

https://ourworldindata.org/burden-of-disease )
Diabetes: https://ourworldindata.org/grapher/diabetes-prevalence

Thyroid Diseases (Thyroid Diseases Relatedness via lodine Levels):
https://www.who.int/'vmnis/iodine/status/summary/IDD_estimates_table 2007.pdf?
ua=1 (in this section, the iodine levels were used to indicate thyroid diseases.

“Median urinary iodine concentration” data of the reference table was used).

Diarrheal Diseases: https://ourworldindata.org/grapher/diarrheal-disease-death-

rates

Colorectal Cancer: https://www.worldgastroenterology.org/UserFiles/file/wdhd-
2008-map-of-digestive-disorders.pdf (The data of “Global Colorectal Cancer
Incidence” section was used.) (The sum of female and male incidence rates was

used.)

Dyspepsia: https://www.worldgastroenterology.org/UserFiles/file/wdhd-2008-map-
of-digestive-disorders.pdf (The data of “Global Functional Dyspepsia Prevalence”

section was used.)
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Constipation: https://www.worldgastroenterology.org/UserFiles/file/wdhd-2008-
map-of-digestive-disorders.pdf (The data of “Global Functional Constipation

Prevalence” section was used.) (Upper bound of the prevalence statistics was used.)

Irritable Bowel Syndrome:
https://www.worldgastroenterology.org/UserFiles/file/wdhd-2008-map-of-
digestive-disorders.pdf (The data of “Global Irritable Bowel Syndrome Prevalence”
section was used.)(The data that has the latest survey date was used.)(If there was

no other data, the data that is related with children was used .)

Air Toxicity Levels (air_toxicity _levels)
https://www.igair.com/world-air-quality-ranking

For countries that have more than one entry, the most toxic city data was used.
General Toxicity Levels (general_toxicity levels)

https://www.igair.com/world-most-polluted-countries

87



C. SET 2 DATA TABLE: MUTANT AND VARIANT TYPES

COUNTRIES
ARUBA
AUSTRALIA
AUSTRIA
BANGLADESH
BELGIUM
BRAZIL
BULGARIA
CANADA
CHILE
CROATIA
CYPRUS
CZECHIA
DENMARK
ESTONIA
FINLAND
FRANCE
GERMANY
GHANA
GREECE
HUNGARY
ICELAND
INDIA
INDONESIA
IRELAND
ISRAEL

ITALY

JAPAN

KENYA
LATVIA
LITHUANIA
LUXEMBOURG
MALAWI
MEXICO
NETHERLANDS
NEW ZEALAND
NIGERIA
NORTH
MACEDONIA
NORWAY
POLAND
PORTUGUAL
QATAR
ROMANIA
RUSSIA
SINGAPORE
SLOVAKIA
SLOVENIA
SOUTH AFRICA
SOUTH KOREA
SPAIN
SWEDEN
SWITZERLAND
TURKEY
UGANDA

UK

USA
ZIMBABWE

GENERAL
DOMINANT
VARIANT //
MUTATION
ORF1a:$3675
S:5477
ORF1a:53675
ORF1a:53675
ORF1a:S3675
S:E484

more than one
more than one
ORF1a:S3675
S:H69-
20A/S:439K
ORF1a:$3675
ORF1a:S3675
S:H69-
ORF1a:53675
ORF1a:S3675
more than one
S:P681
ORF1a:$3675
S:5477

20E (EU1)
S:P681

S:P681

S:P681

S:P681
201/501Y.V1
S:N501
ORF1a:53675
S:Y144-

S:H69-
ORF1a:S3675
more than one
S:P681
201/501Y.V1
S:P681

more than one

S:H69-
ORF1a:53675
more than one
ORF1a:S3675
ORF1a:53675
more than one
S:5477
ORF1a:S3675
more than one
S:H69-

S:N501

more than one
ORF1a:53675
more than one
ORF1a:S3675
S:N501

S:P681

more than one
ORF1a:S3675
more than one

GENERAL
DOMINANT
VARIANT //
MUTATION Freq
0.89
0.91
0.91
0.98
0.97
0.95
0.98
0.78
0.80
0.92
0.91
0.97
0.97
0.91
0.92
0.91
0.96
0.80
0.97
0.93
0.90
0.74
0.75
0.98
0.86
0.89
0.94
0.79
0.64
0.89
0.95
1.00
0.90
0.94
1.00
1.00

1.00
00.99
0.99
0.97
1.00
0.87
0.29
0.73
0.98
0.92
1.00
0.20
0.93
0.96
0.96
0.92
1.00
0.99
0.83
0.94

GENERAL
20A.EU2 Freq

0.36

0.40

0.16

0.18

0.24
0.68
0.11

0.93

0.11

0.40

0.14

0.34

0.15

0.41

0.03
0.27
0.33

0.04

GENERAL

GENERAL

20A/S:154K Freq 20A/S:439K Freq 20A/S:478K Freq 20A/S:484K Freq

GENERAL GENERAL
0 0 0
0 0 0
0 0.24
0 0 0
0 0.18
0 0 0
0 0 0
0 0
0 0 0
0 0 0.37
0 0 091
0 0 0.74
0 0.15
0 0 0
0 0
0 0.08
0 0.11
0 0 0
0 0 0
0 0
0 0 0.08
0 0.37 0 0.29
0 0 0
0 0 0.74
0 0 0
0 0.18
0 0 0
0 0 0
0 0 0
0 0 0
0 0
0 0 0
0 0 0
0 0.11
0 0 0
0 0 0
0 0 0
0 0.15
0 0 0.24
0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0.75
0 0 0
0 0 0
0 0.06
0 031
0 0.07
0 0 0
0 0 0
0 0.06 0.02
0 0 0
0 0 0
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GENERAL

0.48

0.06

0.03
0.12

0.27

0.35

0.22

0.03
0.11
0.06

0.02

oo ooooo oo oo

oo

OO0 o0o0OO0O0o00o0o0ooo

o

o
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GENERAL
20A/S:98F Freq  20B/S:1122L Freq 20B/S:626S Freq 20C/S:452R Freq 20C/S:484K Freq 20C/S:80Y Freq

0.48

0

OO 0000000000000 O0O0O0OO0O0OO0OO0O0O0O0O0O0O0O0O0O0 OO0 OO

OO0 o0oo0oo0o0oo0ooooo
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0.19
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(EU1) Freq

0.16

0.23

0.17

0.57
0.50
0.08
0.16
0.35
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1.00
0.67
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GENERAL
20H/501Y.V2 GENERAL GENERAL
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GENERAL
ORF1a:53675
Freq

0.89
0.71
0.91
0.98
0.97
0.95
0.98
0.78
0.80
0.74

null

0.97
0.97
0.92
0.92
0.91
0.96

0.97

0.11

0.97
0.81
0.60
0.50
0.79
0.26
0.88
0.95
0.93
0.09
0.99
0.83
1.00

0.99
0.96
0.97
1.00
0.87

0.73
0.81
0.81
0.94
0.20
0.93
0.96
0.96
0.73

0.99
0.83
0.94

GENERAL
S:677H.Robinl

Freq

0.03

O O 0O OO0 0000000000000 O0DO0DO0DO0DO0DO0DO0ODO0ODO0ODO0ODO0OO0OO0OO0OO0OOoOOoOOo

O O 0O 0O 00000000000 OoO oo

GENERAL
S:677P.Pelican

Freq

0.02

O O OO O OO0 00 0000000000000 O0O0O0O0O0O0O0O0O0OO0OOoOOoOOoOOo

O O OO O 00000000 oo o oo

GENERAL S:E484 GENERAL S:H655 GENERAL S:H69-

Freq

0.29
0.73
0.15
0.95

null

0.03

0.14
0.04

0.06
0.04
0.06
0.56

0.26
1.00

0.06

0.09
0.05
0.03
0.38

0.02
0.16

90

0
0

o

o ©o o o

o

Freq

0.09
0.93

0.34

null

0.05

0.05

0.01
0.06

o O o o

o o

o

o O O O O o oo (=M=l NN o O o o

o

O O 0O 0O 0000 o0 o oo

o o o o

Freq
0.83
0.60
0.85

0.83

0.98
0.78

0.92
null

0.95
0.95
0.91
0.76
0.79
0.93

0.90

0.10

0.91
0.83
0.90
0.60

0.62
0.89
0.69

0.95

1.00

1.00
0.98
0.89
0.86
0.46
0.83

0.28
0.87
0.92

0.20
0.85
0.92
0.91
0.53

0.98
0.59

0

o

GENERAL S:K417

Freq

0.29
0.83
0.10

null

0.12
0.02

0.03

0.24
1.00

0.03

0.10

0.62

0.44

0.99

0.04
0.01
0.28

0.94
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D. TIME INTERVAL FREQUENCIES

COUNTRIES
ARUBA
AUSTRALIA
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BELGIUM 0.04
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S:P681_time_1  S:P681_time_2 S:P681_time_3 S:Y144-_time_1  S:Y144-_time_2 S:Y144-_time_3

0 0 0.81 0 0 0.79
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E. SET 3 ANALYSES

//Bacteriodetes == freq

//n == percentage

// k == percentage of the mutant X

var data = [
{freq: 343, n:100, k:10}, //India
{freq: 354 , n:100, k:0}, // Indonesia
{freq: 202 , n:100, k:9@}, // Italy
{freq: 157 , n:10@, k:6@}, // Japan
{freq: 346 , n:100Q, k:92}, //Sweden
{freq: 549 , n:10@, k:85), //Spain
{freq: 455 , n:10@, k:59} //USA

var logistic = function(x) {
return 1/( 1 + Math.exp(-x))
}

var model = function(){
var w@ « gaussian(@,1)
var wl = gaussian(®,1)

map(

function(dt){

observe(Binomial({p: logistic (w@ + wl * dt.freq), n: dt.n}) , dt.k)
}, data)

WebPPL - probabilistic programming for the web

return {w8: wd, wl: wl}
|}
| var options = {method : "MCMC", samples: 50080}
var dist= Infer(options,model)
viz.marginals(dist)
| print(“expectation : "+ expectation(marginalize(dist,'wl’)))
print(“positive expectation : " + expectation(marginalize(dist, 'wl'),function(p){p>@}))
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WebiPPL - probabidistic programming fof thir web

0.0

T T T
1.5e-1 1081 502 -18¢17
wi

expectation : B.B0@3370870744748967
positive expectation ; @.9392400000000001

//Bacteriodetes == freq

//n == percentage

// k == percentage of the mutant AB

var data = [
(freq: 343, n:100, k:74}, //India
{freq: 354 , n:10@, k:75}, // Indonesia
{freq: 202 , n:100, k:91}, // Italy
(freq: 157 , n:10@, k:5@), // Japan
{freq: 346 , n:108, k:94}, //Sweden
{freq: 549 , n:109, k:87), //Spain
{freq: 455 , n:10@, k:64} //USA

var logistic = function(x) {
return 1/( 1 + Math.exp(-x))
}

var model = function(){
var w@ = gaussian(@,1)
var wl = gaussian(@,1)

map(

function(dt){

observe(Binomial({p: logistic (wd + wl * dt.freq), n: dt.n}) , dt.k)
}, data)

YVGOH L - HOOS0EISEC Programming 1 tne weo
return {w8: w, wl: wl}
}
wvar options = {method : "MCMC™, samples: S@0e@}
var dist= Infer(options,model)
wviz.marginals(dist)
print(“expectation : "+ expectation(marginalize{dist,'wl')))

print{“positive expectation : " + expectation(marginalize(dist, ‘wil'},function(p){p>8}))
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WobPPL - probabalistic programming for thi wob

T T T T
E0e1 401 2001 B9e1T7
wl

expectation : @.8948919921419380626
positive expectation : @.9987300000000002

[iFirmicutes == freq

fin == percentage

fi &k == percentage of the mutant @

var data = [
{freq: 434, n:108, k:13}, //India
{freq: 528 , n:18@, k:8}, // Indonesia
{freq: €72 , n:18@, k:8%}, // Italy
{freq: 618 , n:18@, k:5@}, // lapan
{freq: 556 , n:180, k:92}, //Sweden
{freq: 437 , n:10@, k:83}, //Spain
{freq: 534 , n:18@, k:56} //USA

var logistic = function(x) {
return 1/{ 1 + Math.exp(-x))

var model = function{}{
var wl = gaussian(@,1)
var wl = gaussian(@,1)

map(

Function{dt){

observe(Binomial{{p: logistic (wd + wl * dt.freq), n: dt.n}) , dt.k)
}. data)

WobPPL - probabilistic programming for the web

return {w8: wd, wl: wl}
}
var options = {method : "MCMC", samples: 50008}
var dist= Infer(options,model)
viz.marginals(dist)
print(“expectation : "+ expectation(marginalize(dist,'wl’)))
print(“positive expectation : “ + expectation(marginalize(dist, 'wl"),function(p){p>8}))
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WebPPL - probabdlistic programming for thir wab

density
i

T T T T 1
020 -0.15 -0.10 -0.050 0.0
wi
expectation : B.8831657830212496888

positive expectation ; @.99794

JiFirmicutes == freq

J/n == percentage

/I k == percentage of the mutant AE

var data = [
{freq: 434, n:108, k:17}, //India
{freq: 528 , n:18@, k:8}, // Indonesia
{freq: 672 , n:109, k:89}, // Italy
{freq: 618 , n:180, k:5@}, // Japan
{freq: 556 , n:18@, k:93}, //Sweden
{freq: 437 , n:10@, k:84}, //Spain
{freq: 534 , n:18@, k:62} //USA

wvar logistic = functionix) {
return 1/{ 1 + Hath.exp(-x)}
}

wvar model = function(){
var w@ = gaussian(@,1)
var wl = gaussian(@,1)
map(
Ffunction(dt){
observe(Binomial{{p: logistic (wd + wl * dt.freq), n: dt.n}) , dt.k)
}, data)

WebPPL - probabilistic programming for the wob

return {we: we, wl: wl}
)
var options = {method : "MCMC", samples: 56000}
var dist= Infer(options,model)
viz.marginals(dist)
print(“expectation : "+ expectation(marginalize(dist,'wl’)))
print(“positive expectation : " + expectation(marginalize(dist, 'wl'),function(p){p>@}))
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WetPPL - probatdistc programming fof the web

T —T T d
4 08 06 04 02 O
wi

expectation @ 8.0R3637278731872112
positive expectation : ©.99994

//Firmicutes == freq

//n == percentage

// k == percentage of the mutant AB

|var data = [
{freq: 434, n:100, k:74}, //India
{freq: 528 , n:10@, k:75}, // Indonesia
{freq: 672 , n:10@, k:91}, // Italy
{freq: 610 , n:10@, k:5@), // Japan
{freq: 556 , n:10@, k:94}, //Sweden
{freq: 437 , n:100, k:87)}, //Spain
{freq: 534 , n:18@, k:64} //USA

var logistic = function(x) {
return 1/( 1 + Math.exp(-x))
}

var model = function(){
var w@ = gaussian(@,1)
var wl = gaussian(®,1)
map(
function(dt){
observe(Binomial({p: logistic (w8 + wl * dt.freq), n: dt.n}) , dt.k)
}, data)

WebPPL - probabiistic programming for the wel

return {wl: wd, wWl: wl}
}
war options = {method : "MCMC®, samples: S@@8a}
var dist= Infer(options,model)
wiz.marginals(dist)
print(“expectation : "+ expectation(marginalize(dist,'wl')})
print{“pesitive expectation : " + expectation(marginalize(dist, 'wl'},function(p){p>@}))
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WebPPL - probablistic programming for the wob
200
180
160 -
140 1
120
100 -

density

&0 -
40

T T T 1
6061 4061 2081 8917
wl

expectation : 0.803904387736800334
positive expectation : @.9991399999999999

//Protecbacteria == freq

fin == percentage

/f k == percentage of the mutant X

var data = [
{freq: 91, n:188, k:18}, //India
{freq: 24 , n:18@, k:8}, // Indonesia
{freq: 21 , n:18@, k:9@}, // Italy
{freq: 9 , n:188, k:68}, // Japan
{freq: 14 , n:l@e@, k:92}, //Sweden
{freq: 18 , n:10@, k:85}, //Spain
{freq: 18 , n:188, k:59} //USA

var logistic = function(x) {
return 1/{ 1 + Hath.exp(-x)}

var model = function){
var wl = gaussian(@,1)
war wl = gaussian(@,1)
map(
function{dt){
observe(Binonial {{p: logistic (wd + wl * dt.freg), n: dt.n}) , dt.k)
1, data)

WebPPL - probabiistc programming for the wob

return {wh: wd, wl: wl}
}
var options = {method : “"MCMC®, samples: 58988}
var dist= Infer{options,model)
wviz.marginals(dist)
print{“expectation : "+ expectation(marginalize(dist,'wl")))
print(“positive expectation @ " + expectation(marginalize(dist, 'wl”),function(p){p>8}))
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WebPPL - probabdistc programming for thi web:

density

0.0 T T T 1
-0.20 =015 010 -0.050
wi

expectation : -0.0844871291447590736
positive expectation ; @

| 7/Protecbacteria == freq

//n == percentage

// k == percentage of the mutant AC

var data = [
{freq: 91, n:100, k:11}, //India
{freq: 24 , n:10@, k:8), // Indonesia
{freq: 21 , n:100, k:3}, // Italy
{freq: 9 , n:108, k:6}, // Japan
{freq: 14 , n:100, k:0}, //Sweden
{freq: 1@ , n:100, k:3}, //Spain
{freq: 18 , n:180, k:8) //USA

var logistic = function(x) {
return 1/( 1 + Math.exp(-x))
}

var model = function(){
var w@ = gaussian(@,1)
var wl = gaussian(@,1)
map(
function(dt)(
observe(B8inomial({p: logistic (w@ + wl * dt.freq), n: dt.n}) , dt.k)
}, data)

WelblPPL - probablistic programming for the web

return {w8: w@, wl: wl}
}
var options = {method : "MCMC™, samples: 58088}
var dist= Infer{options,model)
wviz.marginals(dist)
print({“expectation : "+ expectation(marginalize(dist, 'wl®)))
print{ “positive expectati R ion(marginalize(dist, 'wl"),function(p){p>8}}))
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WebPPL - probablistic programming for the wob

T T T
04 03 0.2 0.1 0
wi

expectation : ©.010637415293605344
positive expectation : 9.9727600000000004

//Protecbacteria == freq

fin == percentage

{/ k == percentage of the mutant AB

var data = [
{freq: 91, n:18@, k:74}, //India
{freq: 24 , n:18@, k:75}, // Indonesia
{freq: 21 , n:lé@, k:91}, // Ttaly
{freg: 9 , n:18@, k:58}, // Japan
{freq: 14 , n:188, k:94}, //Sweden
{freq: 18 , n:180, k:87}, //Spain
{freq: 18 , n:180, k:64} //USA

var logistic = function(x) {
return 1/( 1 + Math.exp{-x))}
}

var model = function{){
var w@ = gaussian(@,1)
var wl = gaussian(@,1)

map(

function(dt){

observe(Binomial{{p: logistic (wd + wl * dt.freq), n: dt.n}) , dt.k)
}. data)

WobPPL - probabilisic programming for the web

return {w8: wé, wl: wl}
}
var options = {method : "MCMC", sanmples: 560080}
var dist= Infer(options,model)
viz.marginals(dist)
print(“expectation : "+ expectation(marginalize(dist,'wl’)))
print(“positive expectation : " + expectation(marginalize(dist, 'wl’),function(p){p>@}))
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WobPPL - probabilistic programming for the web

T T T T 1
908 06 04 02 0 02
wi

expectation : 09.0016791682658504746
positive expectation : 0.5366000000000004

Srhctinobacteria == freg

/in == percentage

Fi k == percentage of the mutant 5:E484 / W

var data = [
{freq: 128, n:100, k:58}, //India
{freq:9@ , n:18@, k:a}, // Indonesia
{freq:41 , n:10@, k:6}, // Italy
{fregz221 , n:18@, k:56}, // lapan
{freq:49 , n:108, k:5}, //Sweden
{freq:1 , n:10@, k:9}, //Spain
{freqz1 , n:188, k:16} //USA

var logistic = function(x) {
return 1/{ 1 + Hath.exp(-x))

var model = function(){
var w@ = gaussian(@,1)
wvar wl = gaussian(@,1)

map(

Function{dt){

observe(Binonial{{p: logistic (wd + wl " dt.freq), n: dt.n}) , dt.k)
}. data)

WebPPL - probabilistic progranmming for the wob

return {wl: w8, wl: wl}
}
var options = {method : "MCMC™, samples: 50068}
var dist= Infer(options,model)
viz.marginals(dist)
print({“expectation : "+ expectation(marginalize(dist, 'w1'}))
print("pesitive expectation : " + expectation(marginalize(dist, 'wl"}, function(p){p>8}))
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WebPPL - probabdistic programming for the web

704
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wi
expectation : 8.912470003161642571
positive expectation : @.9887600000008082
4
Features

/fhctinobacteria == freq

ffn == percentage

f/ & == percentage of the mutant S$:0677 f AC

var data = [
{freq: 128, n:108, k:11}, //India
{freq:9@ , n:188, k:@}, // Indonesia
{freq:41 , n:10@, k:3}, // Italy
{freg:221 , n:1@@, k:6}, // Japan
{freq:49 , n:106, k:8)}, //Sweden
{freq:1 , n:10@, k:1}, //Spain
{freq:1 , n:108, k:8} J/USA

var logistic = function(x) {
return 1/{ 1 + Math.exp(-x)}
}

var model = function{){
var w@ = gaussian(@,1)
var wl = gaussian(@,1)
map(
Function{dt){
observe(Binomial{{p: logistic (wd + wl * dt.freq), n: dt.n}) , dt.k)
1. data)
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density

WebPPL - probabdistic programming for the wab

return {wB: wd, wl: wl}
}
var options = {method : "MCMC", samples: 58088}
var dist= Infer{options,model)
viz.marginals(dist)
print{“expectation : "+ expectation(marginalize(dist, 'wl"}))
print{~positive expectation : " + expectation(marginalize(dist, 'wl'),function{p){p>@}})

26
24
2.2
20
1.6
16
144
124
1.0
0.0
0,60
0.40-]
0.20]
[} .

Wl

T T T T
8 06 04 D2 0
wi

expectation : B,P004964956495771681
positive expectation @ @.7725400000000004
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F. Variant and Mutant Significance Index

Variants and VSI (Variant Significance Index)

Variant Name | Transmissibility | Virulence Immune Evasion VSI
20E (EU1) 2 4 2 8!
20A.EU2 42 43 5¢ 13
20H/501Y.V2 55 26 4 1
20J/501Y.V3 47 28 4° 10
20C/S:452R 51 0" 412 9

" Hodcroft EB, Zuber M, Nadeau S, Crawford KHD, Bloom JD, Veesler D, Vaughan TG, Comas |,
Candelas FG, Stadler T, Neher RA. Emergence and spread of a SARS-CoV-2 variant through Europe in
the summer of 2020. medRxiv [Preprint]. 2020 Nov 27:2020.10.25.20219063. doi:
10.1101/2020.10.25.20219063. PMID: 33269368; PMCID: PMC7709189.

2 Jiahui Chen, Rui Wang, Menglun Wang, Guo-Wei Wei,

Mutations Strengthened SARS-CoV-2 Infectivity,

Journal of Molecular Biology,

Volume 432, Issue 19,

2020,

Pages 5212-5226,

ISSN 0022-2836,

https://doi.org/10.1016/j.jmb.2020.07.009.
(https://www.sciencedirect.com/science/article/pii/S0022283620304563)

3 Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, Zhao H, Errico JM, Theel ES,
Liebeskind MJ, Alford B, Buchser WJ, Ellebedy AH, Fremont DH, Diamond MS, Whelan SPJ. Landscape
analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and
serum antibody neutralization. bioRxiv [Preprint]. 2020 Nov 8:2020.11.06.372037. doi:
10.1101/2020.11.06.372037. Update in: Cell Host Microbe. 2021 Jan 27;: PMID: 33442690; PMCID:
PMC7805447.

#Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, Zhao H, Errico JM, Theel ES,
Liebeskind MJ, Alford B, Buchser WJ, Ellebedy AH, Fremont DH, Diamond MS, Whelan SPJ. Landscape
analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and
serum antibody neutralization. bioRxiv [Preprint]. 2020 Nov 8:2020.11.06.372037. doi:
10.1101/2020.11.06.372037. Update in: Cell Host Microbe. 2021 Jan 27;: PMID: 33442690; PMCID:
PMC7805447.

5 https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
6
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-emerging-variants.h

107



20C/S:484K 51 0 53 10
20A/S:484K 5 5 2 1218
201/501Y.V1 5 5 2 1216
20A/S:154K 51" 58 5% 15
20A/S:478K 5 5 5 15%
20A/S:439K 5 0 5 104
S:677H.Robin1 | 0 42 4% 8
S:677P.Pelican |0 42 4% 8
20A/S:98F 0 0 0 0%
20C/S:80Y 0 0 0 0
20B/S:626S 0 0 0 0

13 Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR, Tada T. B.1.526 SARS-CoV-2 variants
identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies.
bioRxiv [Preprint]. 2021 Mar 24:2021.03.24.436620. doi: 10.1101/2021.03.24.436620. PMID:
33791698; PMCID: PMC8010725.

4 Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR, Tada T. B.1.526 SARS-CoV-2 variants
identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies.
bioRxiv [Preprint]. 2021 Mar 24:2021.03.24.436620. doi: 10.1101/2021.03.24.436620. PMID:
33791698; PMCID: PMC8010725.

b H i id-19-vari (This variant exhibits similar mutations to other SARS-CoV-2

variants including B.1.1.7)
16 .

'7 https://cov-lineages.org/lineages/lineage_B.1.html
®Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of

COVID-19 in Maharashtra, India

Sarah Cherian, Varsha Potdar, Santosh Jadhav, Pragya Yadav, Nivedita Gupta, Mousmi Das, Soumitra Das,
doi: https://doi.org/10.1101/2021.04.22.440932;

Starr TN, Greaney AJ, Dingens AS, Bloom JD. Complete map of SARS-CoV-2 RBD mutations that escape the
monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. bioRxiv [Preprint]. 2021 Feb
22:2021.02.17.431683. doi: 10.1101/2021.02.17.431683. Update in: Cell Rep Med. 2021 Apr 5;:100255. PMID:
33655250; PMCID: PMC7924270.

9 McCallum M, Marco A, Lempp F, Tortorici MA, Pinto D, Walls AC, Beltramello M, Chen A, Liu Z, Zatta
F, Zepeda S, di lulio J, Bowen JE, Montiel-Ruiz M, Zhou J, Rosen LE, Bianchi S, Guarino B, Fregni CS,
Abdelnabi R, Caroline Foo SY, Rothlauf PW, Bloyet LM, Benigni F, Cameroni E, Neyts J, Riva A, Snell G,
Telenti A, Whelan SPJ, Virgin HW, Corti D, Pizzuto MS, Veesler D. N-terminal domain antigenic mapping
reveals a site of vulnerability for SARS-CoV-2. bioRxiv [Preprint]. 2021 Jan 14:2021.01.14.426475. doi:
10.1101/2021.01.14.426475. Update in: Cell. 2021 Mar 16;: PMID: 33469588; PMCID: PMC7814825.
20 ’ § i

2! https://covariants.org/variants/S.N439K

2 hitps://covariants.org/variants/S.Q677H.Robin1

2 https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html

2 https://covariants.org/variants/S.Q677P.Pelican
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20B/S:1122L 0 0 0 0
S:N501 5 5 4 1477
S:E484 5 4 4 1328
S:H69- 4 4 4 1229
S:Q677 4 5 0 g0
S:Y453F 4 5 4 133
S:8477 4 5 5 14%
S:L18 0 0 4 4%
S:Y144- 0 5 5 10%
S:K417 0 2 5 T
S:H655 0 0 0 0%
S:P681 0 0 4 4%
ORF1a:83675 |0 0 0 0%

" https://covariants.org/variants/S.N501
28 . 2 3

https://covariants.org/variants/S.E484
2 https://covariants.org/variants/S.H69-
30 : : 7

https://covariants.org/variants/S.Q677
31 https://covariants.org/variants/S.Y453F
32 . : 7

3 https://covariants.org/variants/S.L18
st u ; /

https://covariants.org/variants/S.Y144-
% https://covariants.org/variants/S.K417
% - - " =

37 https://covariants.org/variants/S.P681
S . : !

Table A. The virulence index levels.
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Virulence Index

Represents disease severity of the variant.

+2

no evidence of increased disease severity

0 effect on disease severity is unknown
+4 potentially more virulent
+5 increased virulent

Immune Evasion Index

Represents immune evasion or vaccine efficacy of the
variant.

no evidence of increased propensity of reinfection

0 effect on vaccine efficacy or immune response is unknown
+4 potential for immune escape
+5 increased propensity of reinfection
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G. SARS-CoV-2 variant and mutation distributions (Global)

The screen shot was gathered from
https://www.gisaid.org/phylodynamics/global/nextstrain/ (Last Access time:
15.05.2021, 17:25)
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https://www.gisaid.org/phylodynamics/global/nextstrain/
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H. Regression Results
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REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Zcovl9fatality

/METHOD=ENTER Zgdp_1 Zginiindex 1 Zconflict_ 1 Ztax_1 Zhousehold 1.

Regression

Variables Entered/Removed?®

Variables Variables
Model Entered Removed Method

1 Zscore: . Enter
SMEAN
(household),
Zscore:
SMEAN(tax),
Zscore:
SMEAN
(conflict),
Zscore:
SMEAN(gdp),
Zscore:
SMEAN
(giniindex)b

a. Dependent Variable: Zscore(cov19fatality)
b. All requested variables entered.

Model Summary
Adjusted R Std. Error of the
Model R R Square Square Estimate
1 6452 416 ,356 ,80226322

a. Predictors: (Constant), Zscore: SMEAN(household), Zscore: SMEAN(tax), Zscore: SMEAN(conflict),

Zscore: SMEAN(gdp), Zscore: SMEAN(giniindex)
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ANOVA?

Sum of
Model Squares df Mean Square F Sig.
1 Regression 22,462 5 4,492 6,980 ,000°
Residual 31,538 49 644
Total 54,000 54

a. Dependent Variable: Zscore(cov19fatality)

b. Predictors: (Constant), Zscore: SMEAN(household), Zscore: SMEAN(tax), Zscore: SMEAN(conflict),
Zscore: SMEAN(gdp), Zscore: SMEAN(giniindex)

Coefficients®
Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t
1 (Constant) ,000 ,108 ,004
Zscore: SMEAN(gdp) -,406 134 -410 -3,040
Zscore: SMEAN(giniindex) 200 135 202 1,482
Zscore: SMEAN(conflict) 482 127 ,486 3,796
Zscore: SMEAN(tax) -,070 121 -,071 -578
Zscore: SMEAN -417 144 -421 -2,899
(household)
Coefficients®
Model Sig.
1 (Constant) ,997
Zscore: SMEAN(Gdp) 004
Zscore: SMEAN(giniindex) 145
Zscore: SMEAN(conflict) ,000
Zscore: SMEAN(tax) ,566
Zscore: SMEAN ,006
(household)

a. Dependent Variable: Zscore(cov19fatality)
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REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA ZPP

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT Zcovl9reprodcution

/METHOD=ENTER Zpopsize Zurbanization Zcovl9mortality Zindoordeath Zoutdoo
rdeath.

Regression
Descriptive Statistics
Mean Std. Deviation N

Zscore(cov19reprodcution) ,0000000 1,00000000 55

Zscore(popsize) 0067019 100794676 55

Zscore(urbanization) 10241139 199264930 55

Zscore(cov19mortality) ,0083045  1,00726610 55

Zscore(indoordeath) ,0000000  1,00000000 55

Zscore(outdoordeath) ,0000000 1,00000000 55

Correlations
Zscore
(cov19reprodcu Zscore Zscore
tion) (popsize) (urbanization)

Pearson Correlation ~ Zscore(cov19reprodcution) 1,000 307 185
Zscore(popsize) ,307 1,000 -,263
Zscore(urbanization) ,185 -,263 1,000
Zscore(cov19mortality) ,085 481 ,099
Zscore(indoordeath) -178 340 -796
Zscore(outdoordeath) -,180 ,263 ,196

Sig. (1-tailed) Zscore(cov19reprodcution) . ,011 ,088
Zscore(popsize) 011 | 026
Zscore(urbanization) ,088 ,026
Zscore(cov19mortality) 269 000 237
Zscore(indoordeath) ,096 ,006 ,000
Zscore(outdoordeath) ,095 ,026 ,076

N Zscore(cov19reprodcution) 55 55 55
Zscore(popsize) 55 55 55
Zscore(urbanization) 55 55 55

Page 1
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Correlations

Zscore Zscore Zscore
(covi9mortality)  (indoordeath)  (outdoordeath)
Pearson Correlation ~ Zscore(cov19reprodcution) ,085 -178 -,180
Zscore(popsize) 481 340 ,263
Zscore(urbanization) ,099 -,796 196
Zscore(cov19mortality) 1,000 -,048 ,087
Zscore(indoordeath) -,048 1,000 -,186
Zscore(outdoordeath) 087 -186 1,000
Sig. (1-tailed) Zscore(cov19reprodcution) ,269 ,096 ,095
Zscore(popsize) ,000 ,006 ,026
Zscore(urbanization) 237 ,000 ,076
Zscore(cov19mortality) ,365 264
Zscore(indoordeath) 365 s | ,087
Zscore(outdoordeath) 264 ,087
N Zscore(cov19reprodcution) 55 55 55
Zscore(popsize) 55 55 55
Zscore(urbanization) 55 55 55
Correlations
Zscore
(cov19reprodcu Zscore Zscore
tion) (popsize) (urbanization)
Zscore(cov19mortality) 55 55 55
Zscore(indoordeath) 55 55 55
Zscore(outdoordeath) 55 55 55
Correlations
Zscore Zscore Zscore
(covi9mortality)  (indoordeath)  (outdoordeath)
Zscore(cov19mortality) 55 55 55
Zscore(indoordeath) 55 55 55
Zscore(outdoordeath) 55 55 55
Page 2
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Variables Entered/Removed?®

Variables Variables
Model Entered Removed Method

1 Zscore . Enter
(outdoordeath
), Zscore
(cov19mortalit
y), Zscore
(indoordeath),
Zscore
(popsize),
Zscore
(urbanization)®

a. Dependent Variable: Zscore(cov19reprodcution)

b. All requested variables entered.

Model Summary
Adjusted R Std. Error of the
Model R R Square Square Estimate
1 6212 ,386 323 ,82256390

a. Predictors: (Constant), Zscore(outdoordeath), Zscore(cov19mortality), Zscore(indoordeath), Zscore
(popsize), Zscore(urbanization)

ANOVA?
Sum of
Model Squares df Mean Square F Sig.
1 Regression 20,846 5 4,169 6,162 ,000°
Residual | 33,154 49 677
Total 54,000 54

a. Dependent Variable: Zscore(cov19reprodcution)

b. Predictors: (Constant), Zscore(outdoordeath), Zscore(cov19mortality), Zscore(indoordeath), Zscore
(popsize), Zscore(urbanization)

Page 3
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Coefficients?

Standardized
Unstandardized Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) -,008 111 -,069 ,945
Zscore(popsize) 725 ,150 ,730 4,827 ,000
Zscore(urbanization) ,208 ,188 ,207 1,105 275
Zscore(cov19mortality) -,262 133 -,264 -1,966 ,055
Zscore(indoordeath) -,359 193 -,359 -1,867 ,068
Zscore(outdoordeath) -,456 123 -,456 -3,696 ,001

Coefficients®
Correlations
Model Zero-order Partial Part
1 (Constant)
Zscore(popsize) ,307 568 540
Zscore(urbanization) ,185 ,156 124
Zscore(cov19mortality) ,085 -,270 -,220
Zscore(indoordeath) -178 -,258 -,209
Zscore(outdoordeath) -,180 -,467 -414
a. Dependent Variable: Zscore(cov19reprodcution)
Page 4
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cov19reprodcution

0,40

70000 80000 90000 1,00000 1,10000

Unstandardized Predicted Value
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CORRELATIONS
/VARIABLES=covl9reprodcution PRE_2
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

Correlations
Correlations
covi9reprodcuti Unstandardized
on Predicted Value
cov19reprodcution Pearson Correlation 1 ,001
_Sig. (2-tailed) _ 9%
N 55 55
Unstandardized Predicted  Pearson Correlation ,001 ‘ 1
valie Sig. (2-tailed) 1996
N 55 55

NONPAR CORR
/VARIABLES=covl9reprodcution PRE_2
/PRINT=SPEARMAN TWOTAIL NOSIG
/MISSING=PAIRWISE.

Nonparametric Correlations

Correlations

cov19reprodcuti
on

Spearman's rho  cov19reprodcution Correlation Coefficient 1,000
_ Sig. (2-tailed) oAl

N 55

Unstandardized Predicted  Correlation Coefficient ,037

\alig  Sig. (2-tailed) 786

N 55

Page 1
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Correlations

Unstandardized
Predicted Value
Spearman's rho  cov19reprodcution _ Correlation Co;fﬂ:ielt i ,037
Sig. (2-tailed) | ,786
N 55
Unstandardized Predicted  Correlation Coefficient 1,000
el Sig. (2-tailed) , }
N 55
GRAPH
/SCATTERPLOT (BIVAR)=PRE 2 WITH covl9fatality
/MISSING=LISTWISE. -
Graph
R Linear = 0,466
10,00 T T

cov19fatality

00000 2,00000 4,00000 6,00000 8,00000

Unstandardized Predicted Value

Page 2
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I. SET-1 CORELATIONS
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CORRELATIONS

/VARIABLES=covl19fatality gdp_1 giniindex 1 conflict_ 1 tax 1 household_ 1

/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

Correlations
Correlations

SMEAN

covi9fatality SMEAN(gdp) (giniindex)

cov19fatality Pearson Correlation 1 -360" 350"

Sig. (2-tailed) 007 009

N 55 55 55

SMEAN(gdp) Pearson Correlation -360" 1 413"

Sig. (2-tailed) 007 | 1002
N 55 56 56

SMEAN(giniindex)  Pearson Correlation 350" 413" 1
Sig. (2-tailed) 009 002 ,

N 55 56 56

SMEAN(conflict) Pearson Correlation 483" -,229 434"

Sig. (2-tailed) ,000 1090 1001

N 55 56 56

SMEAN(tax) Pearson Correlation 110 -,125 337
Sig. (2-tailed) 423 358 011
N 55 56 56

SMEAN(household)  Pearson Correlation 070 -560" 496"

Sig. (2-tailed) 610 1000 1000

N 55 56 56
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Correlations

SMEAN SMEAN

(conflict) SMEAN(tax) (household)

cov19fatality Pearson Correlation 483" 110 070

Sig. (2-tailed) 000 423 610

N 55 | 55 | 55

SMEAN(gdp) Pearson Correlation -,229 -125 -560"

Sig. (2-tailed) ,090 358 000

N 56 56 56

SMEAN(giniindex)  Pearson Correlation 434" 337" 496"

Sig. (2-tailed) 1001 011 000

N 56 56 56

SMEAN(conflict) Pearson Correlation 1 386" 375"

Sig. (2-tailed) ,003 004

N 56 56 56

SMEAN(tax) Pearson Correlation 386" 1 300"

Sig. (2-tailed) 1003 025

N 56 56 56

SMEAN(household)  Pearson Correlation 375" 13007 1
Sig. (2-tailed) 004 025

N 56 56 56

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

NONPAR CORR

/VARIABLES=covl9fatality gdp_1 giniindex 1 conflict_ 1

/PRINT=SPEARMAN TWOTAIL NOSIG
/MISSING=PAIRWISE.

Nonparametric Correlations

126

tax_1 household_ 1
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Correlations

127

covidfatality SMEAN(gdp)
1,000 369"
. 1006

55 55
-369" 1,000
,006 .
55 56
1203 -495"
1138 1000
55 56
,003 -210
,981 121
55 56
1095 -186
491 170
55 56
-034 601"
806 1000
55 56

Page 3



Correlations

SMEAN SMEAN

(giniindex) (conflict)
203 003
138 981

55 55
-495" -210
000 121
56 56
1,000 669
. 1000

56 56
669" 1,000
,000 :
56 56
353" 528"
,008 ,000
56 56
521" 422"
1000 001
56 56

Page 4
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Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

Page 5
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CORRELATIONS

/VARIABLES=covl9reprodcution popsize urbanization covl9mortality indoorde

ath outdoordeath
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

Correlations
Correlations
cov19reprodcuti
on popsize  urbanization = cov19mortality
covi9reprodcution  Pearson Correlation 1 307 ,185 ,085
Sig. (2-tailed) ,023 175 537
N 55 55 55 55
popsize Pearson Correlation 307" 1 -,249 .482"
Sig. (2-tailed) ,023 ,064 ,000
N 55 56 56 56
urbanization Pearson Correlation ,185 -,249 1 ,108
Sig. (2-tailed) 175 ,064 429
N 55 56 56 56
covi9mortality Pearson Correlation 085 482" 108 1
Sig. (2-tailed) 637 ,000 429
N 55 56 56 56
indoordeath Pearson Correlation -178 340 796" -,048
Sig. (2-tailed) 193 ,011 ,000 729
N 55 55 55 | 55
outdoordeath Pearson Correlation -,180 263 196 ,087
Sig. (2-tailed) 189 ,052 152 ,528
N 55 55 55 55
Page 1
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Correlations

indoordeath = outdoordeath

covi9reprodcution  Pearson Correlation -,178 -,180
Sig. (2-tailed) ,193 ,189
N 55 55
popsize Pearson Correlation 1340 ,263
Sig. (2-tailed) 011 ,052
N 55 55
urbanization Pearson Correlation 796" 196
Sig. (2-tailed) ,000 152
N 55 55
cov19mortality Pearson Correlation -,048 ,087
Sig. (2-tailed) 729 528
N 55 55
indoordeath Pearson Correlation 1 -,186
Sig. (2-tailed) 175
N 55 55
outdoordeath Pearson Correlation -186 1
_ Sig. (2-tailed) | 75
N 55 55

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

NONPAR CORR

/VARIABLES=covl9reprodcution popsize urbanization covl9mortality indoorde

ath outdoordeath
/PRINT=SPEARMAN TWOTAIL NOSIG
/MISSING=PAIRWISE.

Nonparametric Correlations
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Correlations

covi9reprodcuti
on popsize
1,000 ,006
. 1968
55 55
,006 1,000
,968
55 56
255 -104
,060 445
55 56
-123 678"
372 1000
55 56
-295" 195
1029 155
55 55
-203 -019
138 888
55 55

Page 3
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Correlations

urbanization  cov19mortality
‘ 1255 123
,060 372

55 55

-104 678"

445 ,000

56 56

1,000 003

. 1980

56 56

,003 1,000

,980

56 56

774" 141
,000 304

55 55

,086 279"

533 039

55 55

Page 4
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Correlations

indoordeath ~ outdoordeath

Spearman's rho  cov19reprodcution  Correlation Coefficient -295" -,203

Sig. (2-tailed) ,029 ,138

N 55 55

popsize Correlation Coefficient ,195 -019

Sig. (2-tailed) 155 ,888

N 55 55

urbanization Correlation Coefficient -,774" ,086

Sig. (2-tailed) ,000 ,533

N 55 55

cov19mortality Correlation Coefficient 41 279"

Sig. (2-tailed) 304 ,039

N 55 55

indoordeath Correlation Coefficient 1,000 -,069

Sig. (2-tailed) | i 616

N 55 55

outdoordeath Correlation Coefficient -,069 1,000
Sig. (2-tailed) 616

N 55 55

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

GRAPH
/SCATTERPLOT (MATRIX)=covl9reprodcution popsize urbanization covl9mortalit
y indoordeath
outdoordeath
/MISSING=LISTWISE.

Graph

Page 5
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Data Source Tables

J.

All databases and webpages were accessed in 15.05.2021 (Last Access time).
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