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ABSTRACT 

 

A PROBABILISTIC ASSESSMENT OF SARS-COV-2 HOST 

INTERACTIONS IN THE CONTEXT OF META-COMMUNITY AND 

URBAN ECOLOGY 

 

 

 

Nehri, Leman Nur 

Master of Science, Biology 

Supervisor : Assist. Prof. Dr. Seçkin Eroğlu 

 

 

 

June 2021, 141 pages 

 

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that was detected in 

Wuhan, China, in December 2019 and spread all around the world. COVID-19 is 

caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which 

spreads through close contact. Many studies have been conducted on the 

transmission, virulence, and immune response of SARS-CoV-2. The intracellular 

mechanism of action of the virus and various host interaction pathways are also 

known. In addition, there are many studies on the mutant types of the virus. However, 

no study has been found on the microbial host interactions of the specific mutants of 

the Spike protein, which is one of the most important structural proteins of the virus. 

This protein allows the virus to enter the cell and is the main target of the ongoing 

vaccine studies. 

In this study, interactions between Spike protein variants and bacteria of gut 

microbiota were analyzed with a probabilistic programming language (PPL), 

WebPPL. It is preferred since it is an expressive and generative language that can 

infer from small data sets. The relationship between the three Spike protein mutants 

and the two SARS-CoV-2 variants with the intestinal microbiota was also 
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investigated. As a result, it was found that different variants of Spike protein exist in 

the hosts that have dissimilar intestinal microbial compositions. Because of the fact 

that the microbe interplays are very dynamic systems, laboratory applications turn to 

be quite costly, time-consuming, and difficult in microbial interaction studies. This 

study is expected to be helpful for the applications of interactions between virus 

variants and microbiomes for laboratory environments. 

 

Keywords: Probabilistic Programming, Spike protein, SARS-CoV-2, Microbial 

Meta-Community, Microbiome 
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ÖZ 

 

META-TOPLULUK VE KENTSEL EKOLOJİ BAĞLAMINDA SARS-COV-

2 KONAK ETKİLEŞİMLERİNİN OLASILIKSAL BİR 

DEĞERLENDİRMESİ 

 

 

 

Nehri, Leman Nur 

Yüksek Lisans, Biyoloji 

Tez Yöneticisi: Dr. Öğr. Üyesi Seçkin Eroğlu 

 

 

Haziran 2021, 141 sayfa 

 

Koronavirüs hastalığı 2019 (COVID-19), ilk olarak Aralık 2019'da Çin'in Wuhan 

kentinde tespit edilen ve devam eden bir pandemidir. COVID-19, yakın temas 

yoluyla yayılan şiddetli akut solunum sendromu koronavirüs 2'den (SARS-CoV-2) 

kaynaklanır. SARS-CoV-2'nin bulaşması, virülansı ve bağışıklık tepkisi üzerine 

birçok çalışma yapılmıştır. Virüsün hücre içi etki mekanizması ve çeşitli konak 

etkileşim yolları da bilinmektedir. Ayrıca virüsün mutant tipleri ile ilgili birçok 

çalışma bulunmaktadır. Ancak, virüsün en önemli yapısal proteinlerinden biri olan 

Spike proteininin farklı mutantlarının mikrobiyal konak etkileşimleri ile ilgili 

herhangi bir çalışma bulunamamıştır. Bu protein, virüsün hücreye girmesini sağlar 

ve aşı çalışmalarının ana hedefidir. 

Bu çalışmada, Spike protein varyantları ile bağırsak mikrobiyotasının bakterileri 

arasındaki etkileşimler, olasılıksal bir programlama dili (PPL) olan WebPPL ile 

analiz edilmiştir. Küçük veri setlerinden çıkarım yapabilen açıklayıcı ve generatif bir 

dil olduğu için bu dil tercih edilmiştir. Ayrıca, üç Spike protein mutantı ve iki SARS-

CoV-2 varyantının bağırsak mikrobiyotası ile ilişkisi araştırılmıştır. Sonuç olarak, 

farklı bağırsak mikrobiyal kompozisyonlarına sahip konaklarda Spike proteininin 
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farklı varyantlarının mevcut olduğu bulunmuştur. Mikrop etkileşimleri çok dinamik 

sistemler olduğu için laboratuvar uygulamaları maliyetli, zaman alıcı ve mikrobiyal 

etkileşim çalışmaları zordur. Bu çalışmanın, laboratuvar ortamları için virüs 

varyantları ve mikrobiyomlar arasındaki etkileşim uygulamalarına yardımcı olması 

beklenmektedir. 

 

Anahtar Kelimeler: Olasılıksal Programlama, Spike Protein, SARS-CoV-2, 

Mikrobiyal Meta-Komünite, Mikrobiyom 
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CHAPTER 1  

1 INTRODUCTION  

1.1 COVID-19 and SARS-CoV-2 

1.1.1 COVID-19: Economic, sociological and technological aspects 

Coronavirus disease 2019 (COVID-19) is the name of a currently well-known 

pandemic disease that affects hundreds of millions of people all around the world 

(Pal & Banerjee, 2020). There are significant variations in COVID-19 susceptibility 

and severity/fatality from person to person (G. Anderson & Reiter, 2020). It is known 

that COVID-19 vulnerability and fatality are affected by many variables: There are 

studied relationships between sunlight exposure (Asyary et al., 2020), dialysis, 

poverty, race, urbanization (Connolly et al., 2020), and COVID-19 (Bhayani et al., 

2020). 

COVID-19 caused many deaths around the world, and at the same time, it caused a 

social transformation by affecting the human population in different aspects that can 

be categorized as economic, social, and technological (Mofijur et al., 2021). 

Significant reductions in income, rising unemployment (Pal & Banerjee, 2020),  

technological reshapings in the healthcare area (Queen, 2021), changes in social 

decisions (Mofijur et al., 2021) are some examples of the different aspects of the 

impacts of COVID-19 on human life. 

Vaccine technologies are a good example of embodying the different effects of 

COVID-19 on the human population because with vaccination various economic, 

social and technological problems and transformations regarding this disease have 

emerged. Since the pandemic shows its strict influence worldwide, to prevent the 
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virus circulation among humans and decrease the harms of the virus, many vaccines 

were produced and proposed to the world (Krammer, 2020). Some newly popular 

vaccines for the disease are based on DNA & RNA technologies currently getting 

approval from the FDA (Figure 1.1). Some of them are based on traditional vaccine 

technologies like viral-based vaccines, protein vaccines, inactivated vector vaccines, 

etc. (Krammer, 2020) 

The vaccine development process is very costly and a long-term project in the normal 

standards. A vaccine can be produced in nearly 15 years, and every step in the 

process needs generous funding, market potential, confirmation of data, etc 

(Krammer, 2020). Despite the traditional vaccine development process, the COVID-

19 vaccine development process is a very short-term project (Krammer, 2020). The 

current vaccines have been developed within nearly one year, and they have become 

the subject of the approval of international organizations like the FDA for immediate 

human use (Krammer, 2020). Since there is a big market for COVID-19 patients and 

also the vaccine development process is quite short, many small-scale companies are 

in the vaccine development process, and emerging technologies are also now 

accepted widely (Krammer, 2020). For instance, RNA-based vaccines have never 

been approved by international health organizations but in this chaotic era, they get 

approvals and many companies are producing and selling these vaccines (Krammer, 

2020). 
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Figure 1.1. The vaccine types for COVID-19 (Krammer, 2020). 

Since the companies in the market have various technologies (Figure 1.1.) and 

because the budget allocated by the countries is different (OECD Policy Responses 

to Coronavirus, 2021), there are different types of vaccines for global production and 

distribution. The costs of the vaccines also have variants among the Technologies; 

therefore, there are vaccines for countries based on the levels of income (OECD 

Policy Responses to Coronavirus, 2021). Just as the economic diversification of the 

vaccine types for countries, there is also diversification on acceptance levels for the 

vaccines by the people. For instance, some people are against vaccine treatment, and 

some people prefer different types of vaccines due to their educational background 

(Lazarus et al., 2021). In addition to these, since economic restrictions define the 

vaccine preferences, people who are citizens of different countries can access only 

the vaccine types supplied by the governments (OECD Policy Responses to 

Coronavirus, 2021). 
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1.1.2 Urbanism, climate change and SARS-CoV-2 

Even though there are lots of microbial circulations among living organisms, modern 

microbial interactions have some kind of specific attributes that are caused by mainly 

two major parameters: Climate change and urbanism. Climate change is the name 

given to the change of the climate systems with chemicals, temperature, and 

biological processes. Many climate changes have been experienced throughout 

world history (Stouffer et al., 2006). Modern climate change is the main outcome of 

the industrial human activities which were operated especially after the 1800s (Karl 

& Trenberth, 2003). These activities changed the earth's ecosystem by contributing 

industrial chemicals to the atmosphere (Daly & Zannetti, 2007), destroying the floras 

and faunas, and decreasing biodiversity by human hands (Avise et al., 2009). The 

changes in the ecosystems can be seen firstly in microorganisms since they have an 

immense capacity for changing their genomes; therefore, these organisms can be 

counted as the major indicators of the ecosystem changes (Singh et al., 2010). In 

addition to climate change, urbanization is one of the significant trends that affect 

the ecosystem’s microbial composition (Pickett, et al. 2016). Urban areas are rapidly 

growing worldwide, and this term is known as urbanization (Sun et al., 2020) and 

urbanism is the discipline that explores the relationship of these urban areas with the 

environment (Roggema, 2016). Due to climate change and urbanism, the microbial 

composition of the earth has been changed remarkably, and therefore interactions 

and evolution of microbial organisms are strongly affected by these processes (Reese 

et al., 2016). 

Since the SARS-CoV-2 virus is a type of virus emerging from the areas of the 

interactions between rural and urban patches, this virus is an example of a microbe 

that emerged from human population and wild organism interactions (A. Banerjee et 

al., 2021). These interactions are observably strong in Wuhan, the city that SARS-

CoV-2 emerged, due to rapid urbanization and composed various urban (Gui et al., 

2019). In addition to urbanization processes, climate change is blamed for the 

emergence of SARS-CoV-2. Since urbanization and climate change have impacted 
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the interactions between humans and the environment, the viral interactions are 

affected by them and we experienced these phenomena as a pandemic in COVID-

19. 

1.1.3 Phylogeny, structure, and host interactions of SARS-CoV-2 

COVID-19 is caused by the SARS-CoV-2 virus which is shared by many organisms 

like bats, pigs, cats, and humans (Figure 1.1). The SARS-CoV-2 virus belongs to the 

SARS-MERS viral family in the evolutionary pathway and variants of these diseases 

(like SARS) have been seen before (D. E. Gordon et al., 2020) 

 

Figure 1.2. A summary of the COVID-19 disease from its origin to the human disease 

(Corman et al., 2018). 

SARS-CoV-2 is an RNA virus belonging to the Nidovirales order Coronaviridae 

family (Figure 1.3) (Enjuanes et al., 2006). SARS-CoV-2 is evolutionarily related to 

HCV-229E, NL63, OC43, and HKU1 as belonging to the same family, 
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Coronaviridae,  which are viruses that cause common colds of  15-30 % in humans 

(W. Liu et al., 2021).   

 

 

 

Figure 1.3. Nidovirales order (Enjuanes et al., 2006). 

Viruses belonging to Nidovirales order show similar structural features (Figure 1.4). 

There are few structural proteins and RNA as genetic material (Enjuanes et al., 

2006). Nidoviruses have a lipid envelope, and this envelope protects the genetic 

material from the environment. All nidoviruses have Nucleocapsid (N) protein which 

interacts with Membrane protein (M). Both structures and proteins vary among the 

viruses. The genome sizes vary among the nidoviruses, whereas the genome 

structures remain similar. All genomes have two big Open-reading frames (ORFs) 

that hold the genetic information of proteins that are responsible for regulations of 

transcription. The parts for structural proteins (such as M and N) stand in the genome 

near ORFs (Enjuanes et al., 2006).  
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Figure 1.4. Structures of the nidoviruses (Enjuanes et al., 2006). 

The life cycle of SARS-CoV-2 consists of four stages; the attachment of the virus to 

the cell and the transfer of genetic material, the processing of genetic material, the 

assembly of viral proteins resulting from translation, and the unified virions to leave 

the cell (Figure 1.5) (V’kovski et al., 2021). 
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Figure 1.5. The life cycle of the SARS-CoV-2 (V’kovski et al., 2021).  

SARS-CoV-2 proteins are associated with some of the host proteins and make 

complexes and these complexes alter the effect of the virus on the host (D. E. Gordon 

et al., 2020). For instance, a virus-host protein-protein interaction (PPI) formed by 

TOM-70 (a host cell membrane protein) and Orf-9b (a SARS-CoV-2 protein) is an 

example of this type of relation (Figure 1.6) (D. E. Gordon et al., 2020). Such SARS-

CoV-2 virus-host protein interaction pathways can also be associated with MERS 

and SARS-CoV viruses and they are potential drug development targets due to their 

shared patterns (D. E. Gordon et al., 2020). 
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Figure 1.6.  CryoEM structure of Orf9b-Tom70 complex (D. E. Gordon et al., 

2020). 

1.1.4 Genome and proteins of SARS-CoV-2  

The SARS-CoV-2 genome consists of two ORF parts, which encode non-structural 

proteins. In addition to the two ORFs, four structural gene regions carry the genetic 

information of the structural proteins of the virus (Figure 1.7) (Wertheim et al., 

2013). 

 

Figure 1.7. Schematic diagram of the SARS coronavirus genome (Wertheim et al., 

2013). 
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In SARS-CoV-2, 16 nonstructural proteins (from cleavage of the two big Orf 

proteins), four structural proteins (spike (S), envelope (E), membrane (M), and 

nucleocapsid (N)), and eight accessory proteins are found (Yoshimoto, 2020). The 

polyproteins of Orf1a and Orf1b are cleaved to smaller non-structural proteins 

(NSPs). NSPs are interacting with each other and regulate gene expression 

(Yoshimoto, 2020). Membrane protein makes the lipid membrane of the virus, 

Nucleocapsid protein links via the Membrane protein and encapsidated the RNA 

genome. Envelope protein is an integral membrane protein and makes an ion channel 

and also plays a role in the virus replication process. Spike protein is the surface 

glycoprotein and mediates host cell attachment of the virus (Yoshimoto, 2020). 

1.2 Structure, function, and host interactions of Spike protein of SARS-

CoV-2 

1.2.1 Function and structure of Spike protein 

Spike protein is one of the most important structural proteins of SARS-CoV-2 

(Guruprasad, 2021). This protein recognizes and binds to the human host cell surface 

receptor angiotensin-converting enzyme-2 (ACE2) receptors and provides entry into 

the cell (Guruprasad, 2021). The immune response of the host is also caused by the 

detection of the Spike protein by the host (Lu et al., 2004). Moreover, Spike protein 

determines the infectivity and transmissibility of the virus and it is the major antigen 

inducer to make an immune response (Hulswit et al., 2016). Therefore, many 

vaccines have been designed to target Spike protein (Du et al., 2009). 

Spike protein consists of two subunits: S1 and S2 (Figure 1.8). S1 is responsible for 

binding to ACE2 receptors; after, this binding process, the S2 subunit performs the 

fusion process into the cell and allows the genetic material of the virus to enter the 

cell (Demers-Mathieu et al., 2020). Cleavage of the S1 subunit from S2 is important 

for the infection; therefore, antibodies that bind Spike protein and prevent cleavage, 

and inhibits the virus fusion to the cell (Demers-Mathieu et al., 2020).  
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Figure 1.8. Schematic representation of the SARS-CoV-2 Spike protein (Y. Huang 

et al., 2020). 

1.2.2 Evolution and host interactions of Spike protein 

SARS-CoV-2 is also found as a haplotype in its host as an RNA virus, and Spike 

proteins can also be categorized by haplotype analysis. Haplotypes are cumulative 

variations on the genetic data in a single chromosome (Tourdot & Zhang, 2019). In 

haplotype variations, a variant is dominant among the other variants, and these 

variants are found in very low frequencies comparing to the dominant haplotype 

(Töpfer et al., 2013). Viruses and viral proteins are found in the host as a haplotype 

structure, as in the example of Spike protein. Spike proteins are made up of small 
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differences between different haplotypes that evolved from the same ancestor 

(Pereson et al., 2021).  

There are two main causes of the variation in a viral population: recombinations and 

mutations (Töpfer et al., 2013). Even though mutations and recombination events are 

found in the viral genome, especially recombinations are rare (Töpfer et al., 2013). 

In viral quasispecies, the dominant haplotype shows very low recombination events. 

Quasispecies are the viral groups in a viral population composed of haplotype 

variations (Domingo, 2002).The Receptor Binding Domain (RBD) of Spike protein, 

which binds to human ACE2 receptors, is not a recent acquisition by recombination, 

but rather an ancient gain that is common with bat viruses (Boni et al., 2020). 

Therefore, mutations (such as deletion and insertion), but not recombination, have 

great importance in Spike protein (and SARS-CoV-2) evolution, in that they generate 

Spike protein variants (Figure 1.9) (Boni et al., 2020). Because its evolution rate is 

similar with each clade of SARS-CoV-2 variants, Spike protein is the major 

evolutionary driver of the cell, and therefore variants of SARS-CoV-2 are also 

largely categorized according to Spike protein variants (Pereson et al., 2021). 
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Figure 1.9. SARS-CoV-2 coronavirus spike sequence variation (V’kovski et al., 

2021). 

1.3 Concept of microbiome 

1.3.1 Microbiomes and the human microbiome 

Microbiomes, which can be defined as the assemblage of the microbes in a host, are 

representatives of diseases or the health condition of the host (Marchesi & Ravel, 

2015). The microbiomes are the main indicators of singular attributes that are 

directly related to the host (Bruijning et al., 2020). The genetic problems of the host 
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can be detected from its microbiome content (Bresalier & Chapkin, 2020). For 

instance, the effects of Endocrine-Disrupting Chemicals (EDCs) in the air can be 

seen in the lung microbiota of the terrestrial animals easily (Segal et al., 2016). The 

gut microbiota is another target for the EDCs (Kumar et al., 2020). Since human 

microbiomes are major representative entities of the host’s attributes -such as diet, 

lifestyle, medical record, etc.- as a whole (Scepanovic et al., 2019), the changes in 

microbiome content can be used for inferring the evolutionary forces that act on the 

host (Bruijning et al., 2020).  

In microbiomes, there are ecological relations among species. The dominant species 

(founder species) of the microbiomes alter the host’s biological reactions by 

providing some chemicals (Trosvik & de Muinck, 2015). For instance, the presence 

of a species can alter the host’s immune response via triggering the host to make 

more IgA-Immunoglobulin A, which affects the immune response, especially in 

respiratory areas, as a first step reaction of the immunity (Donaldson et al., 2018). 

The dominant species and other species are changing in health conditions from 

disease conditions in a microbiome (Rinninella et al., 2019). It is known that the 

abundance of species in the intestinal microbiota is related to the diseases and clinical 

blood markers of the host organism (Manor et al., 2020). The microbial composition 

-viruses, fungi, bacteria- in the microbiota contributes to many metabolic functions 

of the host and plays a role in many physiological effects, especially the immune 

response. The term dysbiosis is used to describe situations where changes in the 

microbiota are directly related to a host's illness. This term indicates that a microbiota 

community is directly related to a disease of the host, in the health state where the 

host does not have this disease, the composition of the microbiota is significantly 

different from the disease state. It is an area that has been studied that these 

conditions, namely the composition of the microbiota and the relative abundances of 

the organisms in it, are related to the disease and health conditions of the host (E. Li 

et al., 2015). Keystone species are the species that are found in low abundance but 

in a very high number of ecological connections via other species in the microbiome 

(S. Banerjee et al., 2018). Dominant species are in a positive relationship with other 
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members of the microbiome via providing a usually mutualist environment, whereas 

keystone species have a high number of both positive and negative relations with 

other microbes (Trosvik & de Muinck, 2015).  

1.3.2 Gut microbiome 

The human gut microbiota compositions show discontinuous variation rather than a 

continuous variation of gut microbes; in other words, the microbes in the gut are 

found with certain clusters (Arumugam et al., 2011). These distinct microbial sets 

are called enterotypes, and three types of enterotypes (with different dominant 

species and different microbial compositions) have been detected in human 

microbiota (Arumugam et al., 2011). Enterotypes indicate a balanced relationship 

between the host and its microbiota (Arumugam et al., 2011). The most important 

characteristic of the community composition of the gut microbiota is the functional 

relationship, rather than which bacterium is present in the microbiome (Arumugam 

et al., 2011). The gut microbiota shows phylogenetic variation at the genus and 

phylum levels among enterotypes and represents the functional variation at the class 

level (Arumugam et al., 2011). 

 

Firmicutes and Bacteroides phyla are the most dominant species in the gut 

microbiota (Thursby & Juge, 2017). Microbes in the gut microbiota are exposed to 

selective forces both by the host factors such as diets, diseases and by other microbes 

that are located in the gut (Hadi et al., 2020; Scanlan, 2019). This is why some low-

abundance bacteria survive in the gut (Arumugam et al., 2011). Every bacterium in 

the gut follows different survival strategies and usually the most abundant function 

will be related to the most dominant type (Arumugam et al., 2011; Loftus et al., 2021; 

Rinninella et al., 2019). However, since the most dominant species cannot provide 

all functions, the functional composition of different species is important for the 

intestinal microbiota (Arumugam et al., 2011; S. Banerjee et al., 2018). 
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The human gut microbiome composition is affected by many factors. For instance, 

the human intestinal microbiota shows a geographical variation (Mobeen et al., 

2018), which is due to different parameters (e.g. genetics, lifestyle, climate, diet, 

altitude etc.) that affect cumulatively (Das et al., 2018). However, even many factors 

affect the microbiome, enterotype variations are thought to be independent of age, 

gender, BMI, and geography, but they are closely related to dietary habits 

(Arumugam et al., 2011; Mobeen et al., 2018) 

 

By looking at the geographical enterotype and intestinal microbiota composition 

variations, Firmicutes and Bacteroidetes are the most common phyla, but different 

countries show different abundances for these species (Mobeen et al., 2018). 

Bacteroides are the dominant organisms of the gut microbiome in general, but in 

some enterotypes, Firmicutes can be the dominant organism (Arumugam et al., 2011; 

Mobeen et al., 2018; Trosvik & de Muinck, 2015). Actinobacteria is the most 

common phyla in the gut microbiota; after, Firmicutes and Bacteroidetes, 

Actinobacteria is the keystone taxon of the gut microbiota and is involved in a high 

degree of ecological network with other gut microbes (Trosvik & de Muinck, 2015).  

Proteobacteria is the most common species after Bacteroides, Firmicutes, and 

Actinobacteria in the human intestinal microbiome (Mobeen et al., 2018). 

Proteobacteria is the species that represents the functional variation that occurs in the 

gut microbiome among different microbe compositions (Bradley & Pollard, 2017). 

 

It is known that the mucosal immune system, which has a very important role in 

immunity, has a network that can be affected by various factors. This system is 

thought to be dysregulated due to intestinal problems. Studies have begun to show 

that the overall immune response of the organism is shaped by a cross-talk between 

the gut and the lung at the organism level (Tulic M C, Piche T, 2016). There are 

many studies reporting the relevance of gut-lung microbiota crosstalk to COVID-19 

(Srinath et al., 2020). 
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1.3.3 Gut microbiome and immune system 

The gut microbiome is affected by diseases and also it affects the disease conditions: 

Rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease (IBD), allergic 

diseases, systemic lupus erythematosus (SLE), skin-related autoimmune 

pathologies, neurological inflammatory diseases, and many cancer types can be 

counted among diseases related to gut microbiota (Lazar et al., 2018).  The 

composition of gut microbiota also changes during COVID-19 disease (Yeoh et al., 

2021). In addition to these, viral infections in the respiratory tract and lung affect the 

gut microbiota by altering the function and composition of the gut microbiome 

(Sencio et al., 2021) since the intestinal microbiota is associated with the lung 

microbiota and the changes in the lung microbiome affect the gut microbial 

composition (Dhar & Mohanty, 2020). Moreover, gut microbiota prevents pathogen 

invasion by insisting on various strategies against pathogens such as killing 

pathogens directly, supporting the immune system of the host, or making 

competition for food (Pickard et al., 2017).  

1.4 Research question 

The main concern of this study is to try to understand whether particular gut 

microbiota compositions tolerate variants of the SARS-CoV-2 virus and Spike 

protein mutations of the virus. In other words, it aims to investigate whether the 

composition of gut microbiota affects the infectivity of variants of SARS-CoV-2 and 

variants of Spike proteins. 

 

Table 1.1 Hypotheses that are used in this study. 

H1: One of the following parameters can explain COVID-19 death and 

reproduction rates: Diet, diseases, economic parameters, environmental 

factors, micronutrient deficiencies, population parameters. 
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H2: One of the following parameters can explain SARS-CoV-2 infectivity 

between variants and specific mutations on Spike protein: Diet, diseases, 

economic parameters, environmental factors, micronutrient deficiencies, 

population parameters. 

H3: Microbes residing gut can explain which SARS-CoV-2 mutant infected the 

host. 

 

1.5 Modeling and in silico analysis 

From the data obtained by the literature research for his study, it has been determined 

that many different parameters in human life are related to both intestinal microbiota 

and COVID-19 (Figure 1.10). To investigate these relations (Figure 1.10), a 

generative theoretical explanation was needed. Moreover, to test hypotheses (Table 

1.1), it was a need for modeling the in silico design and apply the model to get results 

with the help of probabilistic programming tools.  
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Figure 1.10. The network representation of the relations that were used in this 

study. 

1.5.1 Constructing theoretical framework 

Integrated methods are needed to wholly understand the place of humans in the 

ecosystem (Pickett et al., 1997). While putting people in an ecological model, it is 

necessary to consider human activities such as economical activities, social relations, 

and etc. (Grimm et al., 2008a). Therefore, clean theoretical grounds are needed to 
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understand the patterns that occur within urban and human-occupied systems. For 

this theoretical basis, it is necessary to relate economic and social aspects to 

biological-physical systems (Pickett et al., 1997). It is proper to use the basic theories 

and explanations of ecology (such as patch dynamics, spatial heterogeny) on this 

ground; because, in the ecological evaluation of city and city-related systems, it is 

sufficient to modify existing theories rather than making a new theoretical ground 

(Niemelä, 2000).  

Different prevailing paradigms are in place for understanding different ecological 

relationships within city systems (Pickett et al., 2016). When different relationships 

are studied in different parts of the city, the methods and paradigms also change. As 

mentioned above, an integrated approach is required to study human relations in the 

city (Grimm et al., 2008a). The discipline of Urban Ecology combines the human 

elements of humanity with other physical, chemical, and biological factors of the 

biosphere in the context of ecological relations, and the discipline is maturing to 

provide a theoretical basis for practical studies (Grimm et al., 2008a). 

However, the biosphere and ecological dynamics change and evolve as a result of 

evolutionary and geographical processes (Brunner et al., 2019). The impact of 

climate change and urbanization also manifests itself in human-occupied ecosystems 

from different angles: city systems are a hotspot for environmental changes (Grimm 

et al., 2008a). Processes such as changes in biodiversity, altering biochemical 

reactions are some examples of these transformations of the environment (Grimm et 

al., 2008a). Therefore, it is a concern that how the city systems - and therefore people 

- will be positioned in these changing processes (Riffat et al., 2016).  

Recently, it has begun to be discovered that microbes are important not only to 

protect human health but also to keep city-systems sustainable (King, 2014). The 

importance of city microbiomes in water distribution systems and plant-microbiome 

relationships can be shown as an example of this issue (King, 2014). Moreover, the 

microbial structure of the built environment affects mental health (Hoisington et al., 

2015) and also human behavior (Stamper et al., 2016). In addition, there are studies 
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about the effect of indoor bacteria on the built environment (Kembel et al., 2014) 

and studies to make the architectural design microbially sustainable (Brown et al., 

2016). 

The theoretical starting point of this study is based on the maturity of the studies 

about microbes of the city systems, human health, and human activities. In addition, 

it can be said that the relationship of the microbiome concept with the concept of self 

is questioned and includes a philosophical theoretical ground as well (Rees et al., 

2018) and the impact of the microbiome concept on evaluating our self-

consciousness is also discussed in the literature (Relman, 2012). Therefore, the 

microbiome concept creates a link both in the context of ecological relationships and 

health (Inkpen, 2019). In addition to all these, it has been taken into account that 

microbes live together as a meta-community, and theories that have already been 

created to understand ecological relationships at the macro level metacommunities 

(Leibold et al., 2004) have been adapted to the microbial level as microbial 

metacommunity (Miller et al., 2018). Therefore, the microbial metacommunity is 

suitable for the holistic evaluation of city systems and human ecosystems in terms of 

establishing a theoretical infrastructure. 

1.5.2 Modeling the research design 

The data required to know the hosts with various intestinal microbial composites 

infected with which mutant type have not been found in the literature. In addition, 

the geographic distribution analysis of the gut microbiota is limited in the existing 

literature. In contrast, the factors associated with COVID-19 are easier to find in the 

scientific literature. For this reason, a study design has been made in which relevant 

factors were brought together and passed through different analysis processes to 

reach a simulation of interaction on microbiome compositions and mutant types 

distribution  (Figure 1.11). 
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As a result of the literature reviews, the relationship of the microbiota with many 

parameters has been confirmed. As a result of literature research different parameters 

are to be known as related to COVID-19. It is also known that COVID-19 causes 

change in the gut microbiota composition. However, no literature was found during 

this study as to how different variants and Spike protein mutations are tolerated by 

different microbiota. 

In the study, the relationship between COVID-19 with some parameters from various 

angles was analyzed. Analysis of the relationship between different microbiota 

compositions and some mutants of Spike proteins -that were gathered from the 

previous analyses in this study- was made. 

There is no second virus like SARS-CoV-2 with detailed global data and global 

distribution of its different mutants. Globally, the closest data belong to the SARS-

MERS family, but even theirs does not come close to SARS-COV-2 (Petrosillo et 

al., 2020). For this reason, the results of the study could not be tested with a second 

virus as a control group. 
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Figure 1.11. The schematic representation of the research design. 
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1.5.3 Deterministic Programming vs Probabilistic Programming 

Although the analysis process was available to use deterministic computational tools 

with sufficient data at the beginning (See Appendix A), probabilistic programming 

tools were also included in the analysis because the data set shrank in the later parts 

of the analysis, and the deterministic programs made false inferences in this data set. 

 

In deterministic programming languages, the user describes in a deterministic way 

what to do with the program and what processes to follow while executing the 

program (Mitsos et al., 2018). However, probabilistic programming languages 

(PPLs), such as STAN and WebPPL, do not expect the user to provide all the 

knowledge for execution (Ghahramani, 2015). PPLs learn by themselves over the 

data and they have algorithms to infer some relevant conclusions from this data in 

several ways and also they can learn from evidence/observation (Cornell, n.d.). 

 

One of the features of PPLs is that they separate the model from the inference 

algorithm inferred from the model; therefore, it is possible to work by separating the 

model and the inference algorithm over PPL (Sarker, 2021). PPLs with inference 

algorithms, can both make inferences in the forward direction and construct 

causations in the backward direction and thus, causal relations between input and 

output can be detected by PPLs (Dimovski A.S., 2020). Therefore, it is possible to 

simulate the process quite efficiently.  

 

PPLs use generative models and there may be randomness (Tavares et al., 2019). In 

PPLs, there is uncertainty to simulate the models; therefore, the probability is the 

approach to reach uncertainty (Tavares et al., 2019). PPLs use random variables that 

are the values that represent the uncertainties, which means that the value of the 

variable is a probability associated with the parameter (Obeid et al., 2018). In PPLs, 

parameters are unobserved (latent) random variables of interest; they are inferred 

from observed data (Cornell, n.d.). 
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There are also conditional probabilities which some variables depend on different 

variables. With these conditions, the PPLs can learn from data (Olmedo et al., 2018). 

PPLs use the subjective probability approach (Bayesian model) rather than the 

frequentist probability approach (Olmedo et al., 2018). By this, PPLs can capture 

such a pattern of reasoning; even a single model can induce complex explaining 

away dynamics and, many inference algorithms are available to infer from a small 

sample in PPLs (Cornell, n.d.). In addition to this, some PPLs can handle big data 

size with some algorithms such as variational inference (Cornell, n.d.). 
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CHAPTER 2  

2 MATERIALS AND METHODS 

In this study, a three-step process was followed. In the first stage, the relationship 

between COVID-19 death rates and COVID-19 reproduction rates was analyzed on 

a country basis with selected parameters (Figure 2.1). In the second step, the relations 

of the parameters on different mutants of Spike protein and variant types of the 

SARS-CoV-2 were examined. In the third stage, microbiota via mutant type analysis 

in probabilistic programming was performed by using the data obtained from the 

results of the first two stages. In this last stage, the possible distributions of Spike 

protein mutant types and SARS-CoV-2 variants in related microbial compositions 

were visualized. 

2.1 Parameters 

Six group parameter sets -diet, environmental factors, micronutrient deficiency, 

economic parameters, population parameters, and diseases- were created to be used 

in the analysis. Each parameter set was tried to be constructed in a holistic structure 

so that it could represent the main parameter from various angles (Figure 2.1). 
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Figure 2.1. Representation of the selected parameter sets. The six sets of parameters 

are represented as a cluster and the dependent variables of the Set 1 Analysis 

(COVID-19 Fatality Rate and COVID-19 Reproductivity Rate) are represented as an 

ellipse. COVID19 reproduction rate shows the newly infected individuals by an 

infected person. If the rate is bigger than 1, the virus spread. If the rate is smaller 

than 1, the virus will gradually disappear from the population (See Appendix B). 

Diet: Diet is one of the main parameters that are related to COVID-19 deaths 

(Bousquet et al., 2020). Some types of diets show a relationship with COVID-19 

deaths and COVID-19 cases (Greene et al., 2021). People in malnourished countries 

are more prone to COVID-19 severity comparing to people living in countries with 

no malnutrition problems (Mertens & Peñalvo, 2021). Moreover, COVID-19 cases 

show a strong relationship with obesity (Ho et al., 2020). Among the cases that have 

Body-Mass Index (BMI) is bigger than 23 kg/m², a linear relationship of increasing 

COVID-19 severity (Gao et al., 2021). Since the nutrition status affects the immune 

system, intake of the necessary macronutrients also has a significant relation with 



 

 

29 

the COVID-19 severity condition (Chaari et al., 2020). For these reasons, the Diet 

parameter set (Figure 2.1) include the parameters of the selected countries: BMI, 

undernourishment levels, animal fat consumption, sugar consumption, and vegetable 

oil consumption (Figure 2.1). For the resources of the data of these parameters, see 

Appendix B.  

Diseases: COVID-19 cases and COVID-19 fatality are related to many diseases: 

Among cancer patients, COVID-19 death rates are 13.3% higher than other patients 

(Moris et al., 2020),  and some types of cancer patients are in the highest risk groups 

for COVID-19, such as lung cancers (Ömeroğlu Şimşek, 2020). Chronic obstructive 

pulmonary disease (COPD) and asthma are related to COVID-19 (Skevaki et al., 

2021). Many of the non-communicable diseases (NDCs, diseases that cannot pass 

from person to person) such as diabetes or hypertension are related to COVID-19, 

and patients who have NDCs are the risk groups for COVID-19 (Kluge et al., 2020). 

Anemia is also related with COVID-19 severity (Hariyanto & Kurniawan, 2020). 

For these reasons, the Diseases parameter set (Figure 2.1) includes the parameters: 

Anemia, general cancer rates, lung cancer, asthma, COPD, pneumonia, NDCs, 

diabetes, diarrheal diseases, colorectal cancer levels of the countries (Figure 2.1). 

For the resources of the data of parameters, see Appendix B. 

Economic Parameters: Economic statuses such as conflict, competition, and 

cooperation are linked with biology, especially with sociobiology, and the 

philosophical aspect of these connections have been constructed in literature 

(Hirshleifer, 1978). The applications of the economy on biological sciences are also 

widely studied in many disciplines such as urban ecology (Grimm et al., 2008b). The 

relationship of economy and biology can also be applied to the COVID-19 problem: 

The short-term and long-term consequences of the COVID-19 are related to 

household type. Moreover, the effects of COVID-19 are socially stratified (Mikolai 

et al., 2020). The relationship between COVID-19 cases and conflict situations is 

also another aspect of economic status (Bloem & Salemi, 2021). GINI index is a 

parameter that represents the economic inequality in a society; in other words, it 

shows the gap between the poor and the rich in a given country (Elgar et al., 2020), 
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and the relationship of the GINI index and COVID-19 deaths are also available in 

the literature (Elgar et al., 2020). For these reasons, the Economic Parameters 

parameter set (Figure 2.1) includes the parameters: conflict levels, GDP, GINI index, 

tax rates, and household type of the countries (Figure 2.1). For resources of the data 

of parameters, see Appendix B. 

Environmental Factors: Many environmental factors like temperature (Xie & Zhu, 

2020; Xiong et al., 2020), sunlight (Asyary & Veruswati, 2020), open green area 

(Venter et al., 2020), whether factors such as rainfall (Hariyanto & Kurniawan, 2020; 

Tosepu et al., 2020), air toxicity (Travaglio et al., 2021), environmental pollutants 

(Bashir et al., 2020) are related with COVID-19 cases and COVID-19 deaths. Also, 

institutional features affect COVID-19 cases (P. Li et al., 2020). For these reasons, 

the Environmental Factors parameter set (Figure 2.1) includes the parameters: 

sunlight exposure, rainfall, forest area, CO2 emissions, air toxicity levels, general 

toxicity levels, and the average temperature of the countries (Figure 2.1). For 

resources of the data of parameters, see Appendix B. 

Micronutrient Deficiency: Micronutrients are minerals and vitamins that play 

important role in homeostasis by providing various functions in the body (Carr, 

2020). Micronutrients are also important for the immune system to work properly 

and micronutrient deficiencies are related to COVID-19 also (Carr, 2020). Zinc 

deficiency is highly correlated with COVID-19 cases, especially in poor countries 

(Jothimani et al., 2020) and zinc supplementation is offered for COVID-19 patients 

(Wessels et al., 2020). Vitamin D is another essential micronutrient for the immune 

system, and COVID-19 cases and severity are strongly related to vitamin D 

deficiency (D. C. Anderson & Grimes, 2020). Also, provine-iodine nasal sprays 

protect COVID-19 cross infection (Frank et al., 2020). Vitamin A is an important 

micronutrient for the immune system as playing a role in immune response (Z. 

Huang et al., 2018). Vitamin A is important for pneumonia treatments and it can be 

an anti-SARS-CoV-2 regimen (R. Li et al., 2020). For these reasons, the 

Micronutrient Deficiency parameter set (Figure 2.1) includes the parameters: vitamin 
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D levels, vitamin A levels, zinc levels, and iodine levels of the countries (Figure 2.1). 

For resources of the data of parameters, see Appendix B. 

 

Population Parameters: Population size and the median age is related to COVID-

19 spread (Lulbadda et al., 2021). It is also known that air pollution increases the 

risk of COVID-19 fatality (Ali & Islam, 2020). Outdoor air pollution deaths (Cohen 

et al., 2005) and indoor air pollution deaths (Rehfuess et al., 2006) are other death 

rates for air pollution in a population. These three categories of death numbers -

outdoor air pollution deaths, indoor air pollution deaths, and COVID-19 deaths- are 

counted as the population death parameter due to their strong relatedness to the 

pollution. Urbanization is another factor that is related to COVID-19 (Connolly et 

al., 2020; P. Li et al., 2020). For these reasons, the Population Parameters parameter 

set (Figure 2.1) includes population size, population growth type, urbanization 

percent, indoor air pollution deaths, outdoor air pollution deaths, and COVID-19 

mortality deaths of the countries (Figure 2.1). For resources of the data of parameters, 

see Appendix B. 

2.2 Data 

The data used in the analysis were gathered from the data sources and collected in 

tables for further analysis. For the data resources and details about parameters, see 

Appendix B. 

2.2.1 Data of countries 

The CoVariants section of the GISAID database was used to obtain data of city 

populations that are related to different mutants of Spike protein and variants of 

SARS-CoV-2. In this section, 58 countries were found with related information (See 

Appendix A). 56 of 58 countries that have the relevant variant and mutant data were 
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selected for further analysis (Figure 2.2). The Caribbean island countries, Bonaire 

and Curacao were blinded because the information of these countries in the 

parameter data set was mostly missing. 

 

Figure 2.2. The geographical distribution of the selected countries for the analysis 

from the GISAID database.  

2.2.2 Data of parameters  

An Excel file containing the data of all members of the parameter sets for the selected 

countries and the country names was created as a table (see Appendix A). Each data 

column includes data from a single data source -only one web page or database- to 

provide consistency among data sets for the countries. If the data is unavailable in 

these sources the entry about this data was settled as NULL. For detailed information 

about the data resources, see Appendix B.  

2.2.3 Data of SARS-CoV-2 variants and Spike protein mutant types  

The CoVariants / Per Variant section of the GISAID database was used to obtain 

mutant and variant data of city populations (see Appendix A for more information 
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about the GISAID database). An Excel file containing the data of all mutants and 

variants on the GISAID database for the selected countries and the country names 

was created as a table (see Appendix C “Data Table” for the data table of mutants 

and variants). The maximum frequency of mutants and variants for each country was 

used as data in this table. Also, a table that contains time interval frequencies for 

each mutant and variant type was formed for the countries (see Appendix D). 

2.2.4 Microbiome data 

As microbiota data, bacterial distribution of gut microbiota in Mobeen's 2018 study 

(Mobeen et al., 2018) was used for seven countries (Indonesia, India, Japan, Sweden, 

USA, Italy, Spain) for Set 3 Analysis.  

2.3 Analysis 

Each data set was analyzed in itself. According to the results, the next data set was 

analyzed. Two kinds of regression analyses were used with SPSS in the first two sets 

of analyzes since the data was big enough and has no overfitting problem. Logistic 

regression analysis was performed with probabilistic programming (WebPPL) in the 

third set of analyses since the data was small and caused an overfitting problem in 

SPSS. 

Math model: Relations between the variables can be measured by regression analysis 

and associations between the variables can be measured by correlation analysis. 

There are numerous regression analysis models, and the model should be selected 

based on the distribution of the type of the response variable. Linear regression 

models are based on linear equations to produce the results whereas logistic 

regression uses odds ratios of the independent variables to produce output  

(Alexopoulos EC, 2005). For a multi-linear regression model, there must be 10 cases 

(data entry) for each independent variable (Rodríguez del Águila & Benítez-Parejo, 

2011). Confidence intervals (in this study, p-values) are used to represent the 
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statistical errors in the statistical analyses, in other words, they show how reliable 

the results are. 0.05 p-value represents the repeatability of the study is 95 % 

(Alexopoulos EC, 2005). The equation for multi-linear regression (Yale, n.d.) 

yi = 0 + 1xi1 + 2xi2 + ... pxip + i for i = 1,2, ... n. 

( 0, 1, ..., p of the population regression line, n for observations, x for independent 

variables, and y for dependent variables). 

Model selection: In the Set 3 analysis, a logistic regression analysis was performed 

with the parameter selection model. The parameter selection model is an important 

model for data analysis (Mohamad et al., 2020). Parameter selection models are used 

in many areas such as in global sensitivity analysis (Yuan et al., 2019) and smooth 

functions (Wood et al., 2016). Wrong parameter selections can cause wrong results 

to evaluate relations among dependent variables and independent variables 

(Mohamad et al., 2020). Parameter selection is also a very important task in 

biological modeling since the selection of model parameters is crucial for measuring 

biological observations (Lillacci & Khammash, 2010). Since the main question of 

this study is deciding whether there is a relation between SARS-CoV-2 mutants and 

variants (dependent variables) and bacterial microbiome contents of gut 

(independent variables), the parameter selection model was used as the model to 

investigate the relationship between selected variables. The parameter selection 

model was coded via WebPPL, and logistic regression analysis was embedded in the 

model to investigate the relationship between dependent variables and independent 

variables. For the code, see Appendix E. 

Bayesian Approach: In set 3 analyses, the analysis was performed with a bayesian 

approach, not a frequentist approach. In set 3 analyses, analysis was performed with 

a bayesian approach, not a frequentist approach. The traditional understanding, the 

frequentist approach, was used in the set 1 and set 2 analyzes. Both of these 

approaches -Bayesian and frequentist statistics- are used to calculate probability, but 

there are fundamental differences in their interpretation of probability. Frequentist 

approaches assumes that the parameters are fixed and data is uncertain- whereas the 
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Bayesian approach assumes that the parameters are uncertain and the data is known 

(Bland & Altman, 1998). Bayesian approaches are beneficial when data is limited as 

they can incorporate prior knowledge about the parameters (Bland & Altman, 1998). 

The choice of approach is closely related to the appropriate design and parameter 

selection. For example, the preference for the Bayesian approach has increased 

recently in late-phase clinical trials (Stallard et al., 2020). The Bayesian approach is 

based on the principle of updating an antecedent belief with each new data or new 

observation, and it is not necessary to repeat the event/experiment in obtaining the 

probability result (as probability density) (Aitchison, 1964). However, the 

frequentist approach is based on the principle of repeatability of the event to obtain 

the result, that is, it obtains the probability result with the repeatability of the same 

event (Aitchison, 1964). 

Bayesian Logistic Regression: Logistic regression is used as a linear classifier and 

has a grouping approach (Srihari, n.d.). Bayesian logistic regression uses a Bayesian 

approach instead of the classical maximum likelihood methods used in logistic 

regressions, and this inference model is important for specifying explanatory 

variables (X. Huang, 2010). Logistic regression analysis is an analysis that aims to 

get the posterior distribution about the probability of an event and is closely related 

to Monte Carlo diagrams (Van Erp & Van Gelder, 2013). After determining the prior 

regression coefficients, the most direct way to apply Bayesian logistic regression is 

to simulate - infer - the model with the Markov Chain Monte Carlo (MCMC) 

algorithm (Bayesball, n.d.-b). It is a computational technique used in MCMC Bayes 

inferences to generate random samples and find a sequence among these samples. In 

this study, the MCMC algorithm was used as an inference algorithm in the logistic 

regression model. Especially with very limited prior information about regression 

parameters, it is often preferable to include Bayesian thinking in the model 

(Bayesball, n.d.-a). In the case of Set 3 analyzes in this study, the Bayesian Logistic 

Regression model was used, since it has a limited dataset (a limited a priori 

microbiota-mutant type dataset for only seven countries). 
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Stepwise Method: In the multilinear regression method, a linear equation is created 

about how more than one variable can explain a dependent variable. In this study, 

classical multi-linear regression analysis was performed with the enter method in 

SPSS, and the most reasonable equation was tried to be reached with the Stepwise 

method. The stepwise method is a method used to reach the highest value of the 

regression equation. It looks at the biggest partial correlation to construct the 

regression equation, not the biggest correlation between the independent variable and 

dependent variable and tries to reach the highest regression result step by step by 

creating a separate equation for adding each independent variable to the previous 

equation (Johnsson T, 1992). 

2.3.1 Softwares 

IBM SPSS Statistics version 26 was used for Set 1 and Set 2 analyses for multiple 

linear regression analysis and bivariate correlation analysis. The missing value 

analysis was performed for parameters with missing data. The mean of the series was 

used for those whose significant value was greater than 0.05 in missing value 

analysis, and thus new parameter sets were created by transferring missing values. 

Analyzes were made with these new parameter sets. 

Since the data set is too small in Set 3 analyzes, deterministic programming tools 

cannot give the desired results. WebPPL ( http://webppl.org/ ), which is a JavaScript-

based language and developed by cognitive scientists, suitable for small data sets 

with high expressive power, was used in Set 3 analyzes.  

2.3.2 Set 1 analysis 

First of all, missing value analysis was performed in SPSS and missing values for 

countries were detected in parameter values. It was checked whether the blank 

answers were randomly distributed. According to the results of the analysis, it was 

assumed that the values with significance values of the EM mean values greater than 

http://webppl.org/
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0.05 were randomly distributed, and the null values resulting in this way were 

assigned with the replace missing value assignment in SPSS via the series mean 

method. The resulting values were used as SMEAN values in Set-1 and Set-2 

analysis. Later, all variables were standardized. For this, new standardized variables 

(Zvariable) whose Z-scores (to represent the deviations) were obtained using the 

standardization method in the Descriptive option in SPSS. These standardized values 

were used in the analyses. Multi-linear regression and stepwise regression were used 

for set-1 analyses. For each subgroup parameter, both step-wise and multi-linear 

regression analyzes were performed. In addition, stepwise regression analysis 

including all independent parameters was performed. While independent variables 

in these analyzes were variables in parameter sets, COVID-19 fatality and COVID-

19 reproduction rate values were used as dependent variables. For the data of 

dependent variables, see Appendix A. 

2.3.3 Set 2 analysis 

Stepwise regression was used for set-2 analysis. Stepwise regression analysis 

including all independent parameters was performed. While the independent 

variables in these analyzes were the variables in the parameter sets, the frequency 

values of each mutant type were used as the dependent variables. For the data of 

dependent variables, see Appendix C. 

2.3.4 Set 3 analysis 

In Set 3 analyzes, logistic regression analyzes for the variants and mutants 

(dependent variables) obtained from Set 2 analyzes were performed using WebPPL 

(See Appendix E). Microbiome data was used for independent variables for the 

selected seven countries (Indonesia, India, Japan, Sweden, USA, Italy, Spain) 

(Mobeen et al., 2018). These countries were selected since they were both in the 

GISIAD database which means the parameter data was available for them (see 
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Appendix A and Appendix B)- in the microbiome study (Mobeen et al., 2018). In 

other words, for these seven countries, the data is available for both the microbiome 

content of the countries and Set 1 and Set 2 analyses results.  

2.4 Testing hypotheses  

As each group of analysis was dependent on the previous one, the hypotheses (Table 

1.1.) for each set of analyses were constructed based on data from the previous 

analysis’ result (the result of Set-1, the result of Set-2). A small algorithm was 

created for hypothesis testing and the process was controlled and managed with this 

algorithm (Figure 2.3).  

 

Figure 2.3. Representation of hypotheses testing process as a flowchart. 
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CHAPTER 3  

3 RESULTS 

The calculations were two-tailed. All calculations that were included in this study as 

results are accessible as the SPSS reports and WebPPL data, codes, and results in the 

link: 

https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?us

p=sharing  

Adjusted R2 results were used for multiple linear regression. 

3.1 Set 1 results 

Hypothesis 1 (H1): One of the following parameters can explain COVID-19 death 

and reproduction rates: Diet, diseases, economical parameters, environmental 

factors, micronutrient deficiencies, population parameters. 

Set 1 analyzes were performed for Hypothesis 1. Multiple linear regression was 

calculated to predict fatality based on the economy. A regression equation was found 

(F(5,49)=6,980.,p<.000), with an adjusted R2 of .356. Therefore H1 cannot be 

rejected (Table 1.1). Multiple linear regression was calculated to predict 

reproduction based on population. A regression equation was found 

(F(5,49)=6,162.,p<.000), with an adjusted R2 of .323. Apart from these, no 

meaningful regression relationship was found. For the regression tables, See 

Appendix H. In addition to these, correlations between economic variables and 

fatality; and correlations between population parameters and reproduction were 

investigated. Some correlations were found between the dependent and independent 

variables (Table 3.1). To see the correlation matrix for each dependent variable, see 

Appendix İ. 

https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?usp=sharing
https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?usp=sharing
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Table 3.1 Multi-linear regression analysis results of the dependent and independent 

variables. After regression analysis, correlation analyses were done between each 

variable in the parameter sets and related dependent variables. Resulted in significant 

correlations are shown below. 

 Predictor 

 values  
Predicted  

value  
Multi-lineer   

regression   
Correlated   

variables  
  
Population  

parameters  

  
Covid-19  

reproduction 

rate  

  
Adjusted  

R  

Square =  

0.323  

  
Population size vs Covid-

19 reproduction rate: Pearson = 

0.307**, & Spearman = NSR;  
  
Deaths by indoor air pollution rates vs Covid-

19 reproduction rate:  Pearson = NSR 

& Spearman = - 0.295**  
  

  
Economy  

parameters  

  
Covid-19  

fatality  

rate  

  
Adjusted 

R  

Square = 0.356  

  
SMEAN(GDP) vs Covid-

19 fatality rate: Pearson = 

- 0.360* & Spearman = - 0.369*;  
  
SMEAN(Gini index) vs Covid-

19 fatality rate: Pearson = 

0.350* & Spearman = NSR;  
  
SMEAN(Conflict cases) vs Covid-

19 fatality rate: Pearson = 

0.483* & Spearman = NSR  
  
 

NSR = Non-significant result; *Significant in 0.01 level, **Significant in 0.05 level.  

SMEAN(variable) = The missing values of the data were detected by missing value analysis in 

SPSS, the significance of EM means was bigger than 0.05, therefore SMEAN variables were 

created by replacing missing values by using the series mean of the data. The created SMEAN 

variables were used in the multi-linear regression analysis. All variables were standardized to analyze. 

3.2 Set 2 results 

Hypothesis 2 (H2): One of the following parameters can explain SARS-CoV-2 

infectivity between variants and specific mutations on Spike protein: Diet, diseases, 

economical parameters, environmental factors, micronutrient deficiencies, 

population parameters. 
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Set 2 analyzes were performed because it was suggested that Spike protein mutants 

and SARS-CoV-2 variants could also be affected by selected parameters (Figure 2.1) 

such as fatality and reproduction (Appendix H).  As a result of the analysis, it was 

found that the 20 variants and mutants were affected by various parameters. 

Therefore H2 cannot be rejected. See the link: 

https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?us

p=sharing for the result of SET-2 analyses. 

3.3 Set 3 results 

Hypothesis 3 (H3): Microbes residing gut can explain which SARS-CoV-2 mutant 

infected the host.  

Set 1 and Set 2 analyzes were analyzed with a program (SPSS) due to the sufficient 

data set size. However, in the hypothesis testing process, the data were generally 

eliminated at each stage and the data sets were getting smaller; therefore, SPSS and 

deterministic programming languages were insufficient to analyze the data of Set 3. 

Therefore, the analyzes were made in the WebPPL by using Bayesian Logistic 

Regression for Set 3. 

In Set 3 analyzes, 20 variants and mutants regressed with different parameters. All 

the results of Set-2 can be seen in the link: 

https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?us

p=sharing. These mutants and variants were used in Set-3 analyses. 

For seven countries (Indonesia, India, Japan, Sweden, USA, Italy, Spain), gut 

microbe (Bacteroides, Firmicutes, Actinobacteria, and Proteobacteria) relative 

abundances were analyzed as independent variables, and the percent frequencies of 

selected mutants and variants were analyzed as a dependent variable (see Appendix 

C) by logistic regression model in WebPPL (see Appendix E). Appendix E provides 

the positive results of the Set-3 analysis. To see all the analyses codes, data, and 

results for 20 variants and mutants check: 

https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?usp=sharing
https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?usp=sharing
https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?usp=sharing
https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?usp=sharing
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https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?us

p=sharing. The logistic regression analysis was embedded in the parameter selection 

model and it was examined whether the percentage of each bacterium affected the 

mutant and variant frequency (see Appendix E for the model and code and Appendix 

C for variant frequencies). For analysis code and each positive result of the 

combinations of dependent and independent variables, see Appendix E. 

https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?usp=sharing
https://drive.google.com/drive/folders/1paPEhtOng3zS3Azu_TlhxzsyjnXqaasP?usp=sharing
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CHAPTER 4  

4 DISCUSSION 

In this study, the relationship between Spike protein mutants and intestinal bacteria 

was investigated by Bayesian logistic regression. It aims to investigate whether the 

gut microbes can be selective parameters for SARS-CoV-2 mutants and Spike 

protein variants in humans. To inquire this question, the hypotheses (Table 1.1) were 

tested with a serial algorithm (Figure 2.3).  

Firstly, the relationship between COVID-19 (fatality rate and reproduction rate, 

Figure 2.1) and a set of parameters (Diet, Diseases, Environmental factors, Economic 

parameters, Micronutrient Deficiencies, and Population parameters, Figure 2.1) was 

tested with multi-linear regression analysis, both with the stepwise method and enter 

method and bivariate correlation analysis in SPSS for Set 1 analysis process 

(Appendix A). After Set 1 analysis, the second step of the analysis process (Set 2) 

was made by using SPSS with multi-linear regression analysis, both with the 

stepwise method and enter method,  and bivariate correlation analysis for the set of 

parameters (Diet, Diseases, Environmental factors, Economic parameters, 

Micronutrient Deficiencies, Population parameters, Figure 2.1) and SARS-CoV-2 

variants and Spike protein mutants that were taken in GISAID database (Appendix 

C). Lastly, resulted in variants of SARS-CoV-2 and resulted in mutants of Spike 

protein were analyzed by WebPPL with Bayesian logistic regression analysis that 

was embedded in a parameter selection model (Appendix E) to see whether there are 

relationships between SARS-CoV-2 variants, and Spike protein mutants and human 

gut microbes.  

In Set 1 results, the COVID-19 fatality rate (dependent variable) was related to 

economic parameters. The effort for constructing a linkage between the biological 

processes with the socio-economic process is common in many disciplines such as 
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socio-biology (Hirshleifer, 1978) and urban ecology (Grimm et al., 2008b). The 

results of Set 1 analysis for COVID-19 fatality rate support these efforts by giving a 

piece of evidence for showing that the economic parameters can be related to 

COVID-19 deaths. Economic parameters set include the independent variables of 

conflict levels, GDP, GINI index, tax rates, and household type of the countries 

(Figure 2.1). The relatedness of COVID-19 cases and COVID-19 fatality rates with 

conflict cases (Bloem & Salemi, 2021), income inequality (Elgar et al., 2020), and 

socio-economic stratifications (Mikolai et al., 2020) were investigated in the 

literature. In addition to the COVID-19 fatality rate, the COVID-19 reproduction rate 

(dependent variable) was related to population. It is known that the spread of SARS-

CoV-2 is dependent on population structure such as population size and the median 

age of the population (Lulbadda et al., 2021) and the results of Set 1/COVID-19 

reproduction rate is relevant to these results. Population Parameters parameter set 

(Figure 2.1) includes the independent variables of population size, population growth 

type, urbanization percent, indoor and outdoor air pollution deaths, and COVID-19 

mortality deaths of the countries (Figure 2.1). In this parameters set, the COVID-19 

reproduction rate was correlated with the single parameters of population size and 

indoor deaths. The correlation between population size and COVID-19 reproduction 

rate is consistent with previous results in the literature (Lulbadda et al., 2021).  

Secondly, in Set 2 results, many variants (dependent variable) were related to diet, 

diseases, economic parameters, environmental factors, and population parameters 

via various rates. Variants also show various relationships between parameters in the 

literature. For instance, the 20I/501Y.V1  variant emerged in the United Kingdom 

and spread throughout to world (To & Editor, 2021). This variant was found majorly 

in Europe (Figure 4.1). In human reconstituted bronchial epithelium, the 

20I/501Y.V1 variant replicates furiously and due to this reason, it spreads rapidly 

(Touret et al., 1207). The dietary intake affects the human ACE2 receptor, the main 

target of the Spike protein, by affecting gene expression (Bhattacharya et al., 2021; 

Horne & Vohl, 2020). Therefore changing the ACE2 structure by dietary patterns 

can be linked with the results of Set 2. Moreover, chronic diseases are related to 
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SARS-CoV-2 cases and their severity (H. Liu et al., 2020). The Chronic diseases 

problem is a big issue for Europe since they have a long life expectancy comparing 

to the other countries in the world. The average age of Europe is also increasing; 

therefore, the financial supply of the treatments of chronic diseases is a problem for 

European countries (Brennan et al., 2017). Therefore, the regression relation with 

the results can be linked with the emergence of the variants in Europe. It is a  known 

fact that SARS-CoV-2 is related to the economy (Bloem & Salemi, 2021; Elgar et 

al., 2020; Mikolai et al., 2020), environmental conditions (Asyary & Veruswati, 

2020; Travaglio et al., 2021; Xie & Zhu, 2020) and population structure (Connolly 

et al., 2020; Lulbadda et al., 2021). Therefore, the regression relation with the results 

can be linked with the various factors that are found in Set 2. 

 

Figure 4.1. The distribution of the 20I/501Y.V1 variant (GISAID database). 

For the results of mutant types in Set 2 results, it can be said that environmental 

factors and economic parameters parameter sets are common. It is in the receptor-

binding domain (RBD) of Spike protein; therefore, it is important for both antibody 

recognition and ACE-2 binding (GISAID, 2021c) S:E484 mutant caused a re-

infection in Salvador, one of the big cities of Brazil (Nonaka et al., 2021). Salvador 

was the first capital of Brazil, and it promotes tourism events (Nobre, 2002) that 

remarkably increase the air pollution levels (Vianna et al., 2018). Salvador is a 

coastal city that experiences many beach pollution problems, such as pellet pollution 

on the beaches (Fernandino et al., 2015). Salvador also has a garbage disposal 
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problem in its nearby areas, which increases the susceptibility to diarrheal diseases 

(Rego et al., 2005). Therefore, the toxicity relation of mutants is consistent with these 

problems. In addition, many mutants can be related to different parameters, for 

instance, S:Y144 mutation is another Spike protein mutation that is found in 

20I/501Y.V1 and other circulating variants, and this mutant are related to antibody 

escape (Figure 4.3), (GISAID, 2021e). This mutant is related to viral shedding in a 

patient in Washington (Avanzato et al., 2020) which is one of the biggest 

metropolises of the United States. This city experiences deaths from increasing heat 

and excessive ozone concentrations (Jackson et al., 2010). Another example is that, 

S:H69 is a deletion in Spike, which was sequenced mostly in Europe (Figure 4.4), 

(Bal et al., 2021). This mutant occurs with other mutants and also has an example of 

immuno-escape as S:Y144 (GISAID, 2021d). In addition, S:Y144 showed an 

antibody escape in a lymphoma patient (Avanzato et al., 2020), and S:H69 occurred 

in a chronically infected immunosuppressed patient treated with rituximab 

monoclonal antibodies (GISAID, 2021d). It can be pointed out that even there is a 

treatment with antibodies, this mutant can escape from it. Moreover, economical 

parameters are related to many of the mutants and variants. This situation can be 

caused by the relation between the economy and infectious diseases (Goenka et al., 

2014). Micronutrient deficiency is another parameter that mutants and variants were 

related with various rates. It is known that micronutrient deficiencies are related to 

many diseases (Shenkin, 2006) and population parameters that are caused by 

demographic, social, and economic aspects of the population (Hwalla et al., 2017). 

This can be due to the reason that micronutrient deficiency is highly related to 

economic growth and population  dynamics (Darnton-Hill et al., 2005). 

Micronutrients are essential molecules that provide many functions to the body and 

play roles in maintaining homeostasis (Shenkin, 2006). Economic parameters are the 

shared parameter set of many of the mutants and variants. This can be due to the 

strong relationship between economic activities and viral diseases (Adda, 2016).  In 

this study, it is suggested that these distributions of mutants are related to host-

microbiome content (Table 1.1). Therefore, the results of the Set 2 analysis are a kind 
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of verification that different parameters affect SARS-CoV-2 variants and Spike 

protein mutants. The verified mutants and the variant that are affected by various 

were used in Set 3 analysis to see whether there were some relations between them 

and gut microbes.  

 

Figure 4.2. Global distribution of S:E484 mutant. Colors represent different 

countries (GISAID).  
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Figure 4.3. Global distribution of S:Y144- mutant. Colors represent different 

countries (GISAID). 

 

Figure 4.4. Global distribution of S:H69- mutant. Colors represent different 

countries (GISAID).  

Set-3 probability results were very small and therefore only positive results were 

concerned. In Set-3 results, it was seen that bacteria gave positive regression results 

at different rates with variants and mutants obtained from Set-2 tests. Actinobacteria 

is the keystone organism in the gut microbiota (Trosvik & de Muinck, 2015). It can 

also be argued that variants and mutants that cannot be related to Proteobacteria can 

be independent of functional diversity in gut microbes, by showing no relation with 

Proteobacteria. This can be caused by that Proteobacteria are the bacteria responsible 

for the functional diversity in the intestine. (Bradley & Pollard, 2017). In addition, 

the higher rate of association between Actionobacter can be related to the high use 

of probiotic supplements, that improve the intestinal microbiota, in Europe (Nils-

Gerrit Wunsch, 2021). Since Firmicutes and Bacteroides are the dominant organisms 

in the gut microbiome and they provide the majority of ecological relations of human 

gut microbiota (Bradley & Pollard, 2017), it might be possible that such mutants 

with high antibody escape rates (GISAID, 2021d, 2021e) would escape more from 
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the host immune defense depending on the contents of these species, since these 

species are related with an immune response (Donaldson et al., 2018; Kosiewicz et 

al., 2011; Peterson et al., 2015). Despite all this, the results of the set-3 analysis are 

too weak to establish a relationship between bacteria and mutants, and further studies 

are required to confirm these relationships. 

Probabilistic programming languages (PPLs) are used in many areas such as 

cognitive science, statistics, economy, electronics, environmental modeling, and 

biology (A. D. Gordon et al., 2014; Krapu & Borsuk, 2019). Phylogenetic analysis 

is another area to use PPLs (Ronquist et al., 2021). PPLs can infer patterns from data 

(Gutmann et al., 2011; Merrell & Gitter, 2020). Virology is another area that PPLs 

are used (Töpfer et al., 2013). PPLs are diverse to make various applications in 

different areas; for instance, STAN is mainly used by statisticians and (Carpenter et 

al., 2017) WebPPL which is a feature-rich language that was generated from 

JavaScript (Ouyang et al., 2018). Although PPLs have some limitations (Gutmann 

et al., 2011), they made inferences that deterministic programming tools cannot do. 

In this study, WebPPL was used because of its expressive power on small data sets 

(Ouyang et al., 2018).  Since our dataset in Set 3 analysis was quite small to infer 

relations between variables in deterministic programs, WebPPL was selected for 

analysis. The probability results of Set 3 analyses were rather small (Appendix E), 

but, it can be related to a very small dataset (data of seven countries). Even in a small 

dataset like this, WebPPL made inferences and give positive and negative relation 

results.  

This study had some limitations. First of all, large datasets were needed to ensure 

integrity, as data obtained from many different grounds had to be brought together 

as a whole (Appendix A & Appendix B & Appendix C). This situation may have 

caused that parameters stand more important in the analysis process compared to 

others in this data set to be overlooked. Moreover, each analysis process was 

designed to use the data of another which means that the data was lost in each 

forthcoming analysis. This data loss and a large number of parameters caused 

overfitting problems in the outputs. Additionally, as the disciplines of urban ecology 
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and microbial metacommunity (Miller et al., 2018), which are the theoretical grounds 

on which this study is based, are the areas that newly reconstructed, there might be 

various gaps between theoretical and practical applications (Grimm et al., 2008b). 

Despite the large data sets, the missing data problem was observed intensely in some 

parameters, such as diseases and micronutrients in Set 1 analyses, that would affect 

the targeted results in the analysis. Examples such as the lack of sufficient data set 

to measure microbial interactions, insufficient data on geographic microbial 

distributions (Mobeen et al., 2018), insufficient data for the countries to be analyzed 

for vitamin D levels (Appendix A, Appendix B), disease data containing different 

missing values for each country (Appendix A), and the lack of a clinical study in the 

area, can be listed as an example of this situation. 

SARS-CoV-2 is in a very advantageous position against other viruses in terms of 

both clinical data and the traceability of its mutants around the world (Petrosillo et 

al., 2020). However, it may be necessary to establish a control group for this study 

to study the viral mutant-microbiota relationship in detail and meaningfully. 

However, in the sense of in silico analysis, data that can be associated, such as the 

relationship of COVID-19 with human factors, could not be found for other viruses, 

and the comparison data are mostly on the axis of clinical data. Researchers who 

want to investigate the viral mutant-microbiota relationship in more detail may be 

recommended to try to establish a comparable control group for the virus. 

Further analyzes were not used in the set 1 and set 2 analyzes, and after each 

validation, the next hypothesis was moved, as the main goal of the study was to point 

out a possibility in the microbiota analysis in part 3 -the gut microbiota may show 

different tolerances to different mutants- by making some validations in the first two 

sets of analyses. 

Understanding microbiota in terms of composition, diversity, and function is being 

studied, and functional contribution rather than species is thought to be important for 

establishing microbiota composition. Ecological microbiota studies seek to 

understand specific gut microbiota functions in pathways of host-microbiome 
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interactions. In studies of divergence of the microbes in the microbiota, it is known 

that there is a great deal of species diversity at the species level among humans. 

Functional diversity studies look at a specific gene and the function performed by 

certain microbial compositions, because of the idea of forming a microbiota 

community based on the work performed within that microbial ecosystem rather than 

at the species level. Although the microbial composition varies greatly between 

individuals in terms of species diversity, it has been observed that there are not very 

serious differences between individuals in terms of functionality, in other words, the 

functional diversity of the human microbiome has been very conserved among 

people since the core functions in the microbiota have very important places in the 

metabolic pathways of the host (Lozupone et al., 2012). It is known that some phyla 

variations are associated with various diseases, especially in the intestinal microbiota 

(Rinninella et al., 2019). 

It is known that some phyla variations are associated with various diseases, 

especially in the intestinal microbiota. However, in some cases, variations not 

detected at the phylum level but detected at the species level are also known to affect 

host status (Wakita et al., 2018)In this study, the geographic variations achieved are 

at the phylum level, and two dominant phylums (Bacteroidetes and Firmicutes), one 

keystone phylum (Actionobacter) and one phylum that influence the functional 

diversification of the microbiome (Proteobacter) were used. This is a limitation of 

this study because only phylum level analysis was possible, but analysis at other 

levels, such as species or family, may be related to different host-metabolic factors 

and functions. For this reason, researchers who want to work on this subject should 

also consider the functional effects at different levels. 

The existence of a crosstalk system between the gut and lung (Srinath et al., 2020) 

may also suggest that different respiratory viral mutants may affect transmission, 

virulence, and immune response of the host, as different compositions of microbiota, 

are known to affect crosstalk networks, although the results of this study do not 

conclusively point to this relationship. Since Lung microbiota studies are usually 

performed in laboratory environments isolated from the organism (Tulic M C, Piche 



 

 

52 

T, 2016), it may be necessary to conduct and investigate such studies at the 

organismal level. 

As a result of the set 3 analyzes, it was seen that some mutants and variants gave 

positive regression results with various bacteria in the gut microbiota, out of a total 

of 20 mutants/variants. Due to the very small size of the dataset, only a positive 

probabilistic result was taken into account when evaluating the results. Datasets, 

logistic regression code, and results are available in Appendix E. This study looked 

at whether mutants regressed positively with different bacteria and some positive 

results were obtained, but the dataset is very small. Therefore, studies involving more 

data should be conducted to support hypothesis 3. In addition, both clinical data and 

results from laboratory experiments are needed to study microbiota and different 

mutant relationships. This study proposes a method for verifying a hypothesis that is 

difficult to obtain from a small data set with a deterministic probabilistic approach 

using Bayesian logistic regression. Different datasets and different models can 

explore this issue better. 

The data in the Set 3 analyzes are very limited, the models are too simple, and the 

data for the 7 countries may not be a complete representation of the countries because 

these data are the average of the whole country as a result of a limited study, and 

there is no data to show the differences between countries and within the country 

itself. Even if these reasons preclude constructing credibility about the set 3 results, 

however, there may still be a possibility that different microbiota may be a factor in 

the selection of different mutants and variants due to the approach of Bayesian 

logistic regression in interpreting this limited data set. 

When the data of this study were taken from the GISAID database, there were 3-

time intervals. Time intervals were thought to be related to transmission virulence 

and immune response of the virus, and analyzes were also performed for time 

intervals and parameters. However, since a significant result could not be obtained, 

the results were not included in this study because a meaningful regression or 
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correlation relationship could not be detected between any interval and any 

parameter set.
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CHAPTER 5  

5 CONCLUSION 

In this study, it was investigated that whether there is a relationship between Spike 

protein mutations of SARS-CoV-2 and gut bacteria in humans. According to the 

results gained by using Bayesian Logistic Regression in WebPPL, a probabilistic 

programming language, it has been inferred that the toleration of specific human gut 

microbiota compositions for SARS-CoV-2 Spike proteins varies. While the results 

obtained are likely very small, this research suggests that there may be meaningful 

associations between gut bacteria and viral mutants if studied with clinical studies 

and larger datasets. Although it was not analyzed in detail because of the problem of 

small data, the results can give an insight for the researchers to develop protective 

treatments against pathogens by enhancing the host microbiome. 
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APPENDICES 

A. SET 1 DATA TABLE : PARAMETERS 

 

 

COUNTRIES GDP

GINI 

INDEX CONFLICT

TAX 

RATES HOUSEHOLD BMI

VEGETABLE OIL 

CONSUMPTION

ANIMAL FAT 

CONSUMPTION

SUGAR 

CONSUMPTION UNDERNOURHSMENT

ARUBA 29008 null null 25  2.9 null null null null null

AUSTRALIA 55057 34.40 null 30  2.5 64.50 23.40  5.70  60.40 3

AUSTRIA 50122 30.80 17 25  2.3 54.30 15.50  15.80  46.90 3

BANGLADESH 1856 32.40 634 25  4.5  20.00  7.00  0.20   9.30 13

BELGIUM 46345 27.20 26 25  2.3  59.50  11.30  17.10  58.20 3

BRAZIL 8717 53.40 6658 34  3.3  56.50  19.90  4.20  42.80 3

BULGARIA 9828 41.30 31 10  2.3  61.70  10.00  3.40  34.30 3

CANADA 46190 33.30 null 26  2.4  64.10  25.90  15.20  90.30 3

CHILE 14897 44.40 777 25  3.6  63.10  7.90  2.50  48.00 4

CROATIA 14944 29.70 12 18  2.8  59.60  8.10  4.00  56.10 3

CYPRUS 27858 32.70 20 13  2.8  59.10  15.80  0.40 59.30 7

CZECHIA 23490 25.00 6 19  2.3  62.30  14.80  15.20  50.10 3

DENMARK 60213 28.20 30 22 null  55.40  1.70  22.90  55.00 3

ESTONIA 23718 30.30 1 20  2.3  55.80  7.70  9.20  52.30 3

FINLAND 48771 27.30 8 20  2.1  57.90  6.20  11.90  40.30 3

FRANCE 40496 32.40 252 32  2.2  59.50  17.40  14.10  38.30 3

GERMANY 46468 31.90 230 30  2.1  56.80  14.40  12.60  48.10 3

GHANA 2202 43.50 115 25  3.5  32.00  6.30  0.20  14.10 7

GREECE 19581 32.90 173 24  2.6   62.30  29.60  3.10   30.30 3

HUNGARY 16730 29.60 1 9  2.4  61.60  10.40  15.10  40.90 3

ICELAND 67084  26.10  1 20 null  59.10  9.00  18.60  57.10 3

INDIA 2100  35.70 3413 30  4.6  19.70  7.70 0.00  22.20 14

INDONESIA 4136 38.20 451 25  3.9  28.20  9.80  0.40  16.90 9

IRELAND 78799 31.40 13 13  2.8  60.60  13.80  15.30  83.90 3

ISRAEL 43589 39.00 182 23  3.1  64.30  28.60  1.80  31.00 3

ITALY 33226 35.90 173 28  2.4  58.50  26.80  5.50  32.50 3

JAPAN 40247 32.90 null 30  2.3  27.20  15.50  1.00  26.90 3

KENYA 1817 40.80 210 30  3.6  25.50  5.40  1.10  17.50 23

LATVIA 17819 35.10 2 20  2.4  57.80  12.90  22.20  51.80 3

LITHUANIA 19551 35.70 null 15  2.4  59.60  9.60  10.70  92.00 3

LUXEMBOURG 114685 35.40 null 25  2.4  58.70  11.30  9.70  162.20 3

MALAWI 412 44.70 139 30  4.5   23.40  2.90  1.00   10.80 19

MEXICO 9946 45.40 7650 30  3.7  64.90  10.30  2.50   49.60 7

NETHERLANDS 52295   28.10 101 25  2.2  57.80  15.80  7.40  44.90 3

NEW ZEALAND 41558 NULL null 28  2.7  65.60  7.80  11.10  56.20 3

NIGERIA 2230 35.10 2714 30  4.9  28.90  10.80  0.30  11.10 13

NORTH 

MACEDONIA 6022 33.00 4 10 null  58.10  17.00  6.60  49.70 3

NORWAY 75420 27.60 13 22  2.2  58.30  15.80  11.10  43.90 3

POLAND 15695 30.20 22 19  2.8  58.30  7.00  17.20  44.30 3

PORTUGUAL 23214 33.50 10 32  2.6  57.50  15.20  8.30  37.80 3

QATAR 62088 NULL null 10 null  71.70 null null null null

ROMANIA 12913 35.80 null 16  2.7  57.70  14.70  7.60  28.40 3

RUSSIA 11585 37.50 55 20  2.6  57.10  14.90  4.30  76.70 3

SINGAPORE 65233 NULL null 17  3.3  31.80 null null null null

SLOVAKIA 19266 25.00 4 21  2.9  56.20  16.10  17.10  70.20 6

SLOVENIA 25941 24.60 2 19  2.5  56.10  8.10  19.10  48.10 3

SOUTH AFRICA 6001 63.00 751 28  3.4  53.80  13.00  0.60  43.80 6

SOUTH KOREA 31846 31.40 42 28  2.5  30.30  18.60  3.90  38.60 3

SPAIN 29565 34.70 232 25  2.6  61.60  28.20  4.60  33.20 3

SWEDEN 51648 30.00 26 21 null  56.40  7.50  20.50  48.70 3

SWITZERLAND 81989 33.10 6 21  2.2  54.30  20.30  9.20  49.20 3

TURKEY 9127 41.90 670 22  4.1  66.80  18.00  2.70  31.80 3

UGANDA 794 42.80 547 30  4.5  22.40  8.20  0.40  12.10 null

UK 42329 35.10 134 19  2.3  63.70  13.10  5.60  37.80 3

USA 65298 41.40 1015 26  2.5  67.90  19.50  3.30  66.20 3

ZIMBABWE 1464 50.30 69 25  4.1  38.20  11.70  0.50  33.30 null
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ANTIBIOTIC RESISTANCE CANCER LUNG_CANCER ASTHMA COPD PHEUMONIA NDC DIABET

DIERRAL 

DISEASES

COLREACTAL 

CANCER DYSPENSIA CONSTIPATION IBS ANEMIA

null null null null  34.5 null null  11.62 null null null null null null

35 452.4  34.00  10.71  143.2  9.07 15281  5.07  0.43 null null  30.7  8.9  20.10

32 255.7  11.77	  5.33  141.9  4.59 15492  6.35  0.49  128.6 null null null  24.50

null 106.2  3.30	  2.75 null  32.50	 21148  8.38  30.02 null null null  8.5  45.70

43 349.2  10.10	  4.66   190.6  19.69 15967  4.29  2.38	  125.7 null null  6.7  23.50

null 215.4  6.02	  4.88  273.8  40.05	 19291  8.11  3.46	  23.6 null null null  37.30

48 247.1  6.28	  3.43  100.8  12.95	 21449  5.81  0.42  77.1 null  20.6 null  28.00

10 248.0  25.05  5.77  164.3  11.58	 15798  7.37  1.95	  86.6 null  16.7  17.5  17.40

null 180.9  7.32	  5.03  153.3  19.76 17125  8.46  1.75	  31.1 null null null  27.00

41 290.8  10.21	  3.91  131.4  6.43	 17557  5.59  0.42  117.6 null null null  28.70

null 256.7  5.30	  5.55  55.5  9.35 15129  9.24  1.25	 null null null null  29.00

38 292.6  12.32	  3.26  106.7  15.66	 16824  6.82  1.25	  149.8 19.0  13.0  20.0  26.60

15 351.1  27.80  5.70  289.9  18.23	 16824  6.41  2.61  136.2  3.4 null null  22.80

34 278.5  7.65	  2.65  71.2  9.19	 18362  4.02  0.12 null null null null  25.50

18 271.2  8.07	  6.19  96.2  5.06	 16031  5.76  0.34  84.2 null null  5.1  21.90

42 341.9  8.22	  6.55 52.0  10.98	 14645  4.77  0.69	  117.8 null  22.4  4.7  25.10

27 313.2  11.13	  6.55  125.5  11.42 16561  8.31  1.66	   156.2  20.4 null  22.0  23.30

null 115.9  0.60	  2.71 null  114.91 22158  4.97  34.78	 null null null null  54.30

47 264.7  7.27	  5.28 null  14.41 16276  4.55  0.14  71.1 null null null  23.70

39 338.2  22.69  3.28  220.4  5.65 19716  7.55  1.28  152.8 null null null  27.30

null 265.1  22.95  8.83  159.7  14.80 14841  5.31  0.94 null null null null  22.10

71 97.1  1.70	  2.48 null  52.50 22628  10.39  85.52	  6.3 null null null  50.10

null 141.1  6.30	  5.26 null  26.57	 22613  6.32  46.02  17.8 null null null  42.00

49 372.8  16.81  7.92  191.7  17.59	 15873  3.28  0.53  97.6 null null  15.0  21.50

null 240.7  9.11	  5.54  107.1  17.85 14465  6.74  2.15	 93.3 null null null  23.80

47 292.6  8.75	  3.67  115.9  7.11 14507  4.78  0.45	   132.1  13.4  34.1  15.0  24.60

null 285.1  8.04	  4.60  40.9  22.16 12718  5.72  0.71	 151.2 null null  20.0  34.10

null 149.2  2.10  3.37 null  93.62	 20462  2.92  76.94 null null null null  38.20

51 301.5  6.04	  3.93  59.5  11.20 21024  4.91  0.18 null null null null  25.40

46 293.4  4.71	  3.35  150.3  13.88	 20867  3.67  0.27	 null null null null  25.60

44 291.9  7.97	  7.24  138.1  13.36	 16122  4.42  1.49	 null null null null  23.30

null 154.2  0.40  4.16 null  91.62	 21872  3.94  70.11 null null null null  41.80

49 140.4  4.96	  3.58  242.8  19.82 18853  13.06  4.15  11.1  8.5  19.0  35.0  19.60

34 349.6  18.10	  7.24  194.6  16.40	 15985  5.29  0.96  119.5  13.8  22.0  6.2  23.20

null 422.9  18.06  8.03  238.7  8.14 16037  8.08  0.86 null null   19.9 null  20.20

null 110.4  0.40	  2.99 null  92.93	 19727  2.42  73.67 null null null null  57.80

null 277.0  5.48	  4.29 112.0  5.63 19003  10.08  0.41 null null null null  28.10

9 327.5  15.80  8.17  178.5  15.28 15495  5.31  2.67	  144.1 null null null  21.50

40 267.3  13.59  4.78 114.3  15.88 17977  5.91  0.40	  81.1 null null null  26.20

44 261.8  5.35	  8.71  104.4  24.59 15662  9.85  0.63	 100.1 null null null  25.20

null 107.2  4.20  4.59  56.6  18.80	 17278  16.52  0.35 null null null null  33.40

57 263.1  7.81  4.45 164.9  21.69 20520  9.74  0.56 56.3 null null  10.0  27.40

null 234.3  5.77	  2.98 null  17.73 23454  6.18  0.28	  66.8 null null  19.0  24.00

null 233.0  11.50  4.56 null  41.85 11776  10.99  0.23	 null  7.9  3.9  8.6  31.80

48 296.8  7.34	  3.02 93.3  20.23 18561  7.29  0.36	 110.8 null null null  27.30

39 309.0  11.83	  4.52  122.0  12.24	 15229  7.25  0.15	  114.7 null null null  25.60

54 209.5  7.09	  2.24  331.0  62.16 19374  5.52  32.75 13.Eyl null null null  28.10

null 242.7  10.37	  4.59  104.3  17.68	 13334  6.80  1.23	 null null null  5.7  25.80

48 277.2  5.08	  5.24  139.9  10.17	 14312  7.17  0.75 113.4 24.0  29.0  7.3  24.50

6 288.6  14.04  8.57  113.6  11.21 15069 4.79	  2.30  122.7  25.0  6.5 null  21.80

33 317.6  10.71	  6.18 null  7.89 14186  5.59  1.03 129.4 null null  8.4  25.10

55 231.5  4.90	  5.19 null  13.36 18402  12.13  0.70  15.0  28.4  24.5  8.6  34.40

null 153.8  2.10	  4.66 null  78.81 20819  2.50  57.79 null null null null  34.30

45 319.9  19.67	  9.11  210.7  24.11 16908  4.28  0.83 121.0  41.0 null  12.0  21.90

13 362.2  26.15	  5.45  248.2  15.88	 19743  10.79  1.72  61.1  12.0  18.0  10.0  16.20

null 200.4  5.80  2.98 null  137.63 24788  1.82  44.94	 null null null null  34.00
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VITAMIN A 

DEFFICIENCY

ZINC 

DEFFICIENCY

VITAMIN 

D LEVELS

IODINE 

UPTAKE

SUNLIGHT 

EXPOSURE TEMPERATURE RAINFALL

AIR 

TOXICTY 

LEVELS

GENERAL 

TOXICTY 

LEVELS FOREST AREA

null null null null null null null null null  2.3

null  3.80  70.2 104 3206 21.65 534 71  7.60  17.4

null  7.40  9.5 111 1888  6.35 1110 null  10.90  47.2

 21.70  29.70 null 126 4029   25.00 2666 154  77.10  14.5

null  6.80  56.4 80 1645  9.55 847 null  8.90  22.8

 13.30  7.30  52.4 360 4552  24.95 1761 124  14.20  59.7

 18.30  15.30 null 198 2331  	10.55 608 11  27.50 35.6

null  8.00  67.7 null 1887 	-5.35 537 34  7.30  38.7

 7.90  5.70 null 984 3982 	8.45 1522 63  19.30  24.2

 9.20  12.40 null 140 1976  10.9 1113 65  21.20  34.2

null  6.10 null null 3439  18.45 498 null  15.80  18.7

 5.80  11.00  58.2 119 1707  	7.55 677 12  12.30  34.6

null  6.20  25.5 61 1691  7.50 703 null  9.40  15.7

 8.70  10.50  43.7 65 1781  5.10 626 null  5.90  56.1

null  4.60  42.9 164 1494  1.70 536 26  5.00  73.7

null  3.90  61.0 85 1907  10.70 867 38  11.10  31.2

null  9.00  45.2 148 1812  8.50 700 28  10.10  32.7

 75.80  21.60 null 54 5166  27.20 1187 null  26.90  35.0

null  7.20  42.9 null 2753  15.40 652 null  18.40  30.3

 7.00  8.40 null 80 1932  	9.85 589 33  14.30  22.5	

null  3.10  46.1 150 957  1.75 1940 null  7.20  0.5

 62.00  31.20  36.4 133 4514 23.65 1083 149  51.90  24.1

 19.60  31.20 null 229 5220 	25.85 2702 70  40.70  49.7

null  4.00  37.1 82 1509  	9.30 1118 null  8.60  11.2

null  5.50  55.1 null 3682   19.20 435 78  16.90  6.5

 null  5.80  39.9 94 2444  	13.45 832 53  18.50  31.8

null  	16.40  59.1 null 2521  11.15 1668 70  9.80  68.4

 84.40  25.30 null 118 5803  24.75 630 null  14.20  6.3

 13.00  11.60 null 59 1671  5.60 667 null  11.30  54.8	

 11.10  7.50 null 75 1801  	6.20 656 null  11.70  35.1

null  3.60 null 148 1687  	8.65 934 null  9.00  36.5

 59.20  40.60 null null 5019  21.90 1181 null null  24.7

 26.80  16.90 null 235 4974   21.00 758 97  18.90  33.9

null  	5.00  53.2 154 1662   9.25 778 34  9.70  10.9

null  4.40  39.8 66 2487  10.55 1732 null  7.00  37.4

 29.50  20.60  52.7 130 5251  26.80 1150 null null  24.1

 29.70  14.10 null 228 2403 null 619 22  30.60  39.7

null  6.20  67.2 null 1439   1.50 1414 16  5.70  33.3

 9.30  10.30  33.5 84 1749  7.85 600 35  16.90  30.9

null  6.30 null null 2585  	15.15 854 null  9.10  36.2

null  33.40 null 203 4905  	27.15 74 null  44.30  0.0

 16.20  7.50 null 102 2071  	8.8 637 null  15.80  30.1

 14.10  8.30  29.1 93 1795  	-5.1 460 75  9.30  49.8

null  	15.40 null null 3979  	26.45 2497 60  11.80  22.5

 8.30  	16.30 null 183 1795  	6.80 824 37  15.30  40.1

null  9.80 null null 2256 	8.90 1162 null  null  61.7

 16.90  20.00  37.0 177 4111  	17.75 495 112  18.00  14.1

 null  	13.00  46.1 null 2535  	11.5 1274 63  19.50  64.7

 null  	5.40  52.7 109 2705  13.30 636 34  10.40  37.2

 null  6.10  95.0 null 1587  2.10 624 null  5.00  68.7

 null  4.90  50.0 141 2158  5.50 1537 17  9.00  31.9

 12.40  21.70 null 75 2924  11.10 593 null  18.70  28.5

 27.90  	20.50 null 464 5499  22.80 1180 null  26.10  12.1

null  4.60  56.2 null 1576  	8.45 1220 20  8.30  13.1

null  5.00  70.4 249 2736  	8.55 715 75  9.60  33.9

 35.80  48.40 null 245 4918  21.00 657 null null  45.3
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COVID19 

FATALITY 

RATE

COVID19 

REPRODUCTION 

RATE

POPULATION 

SIZE

POPULATION 

GROWTH TYPE

URBANIZATION 

PERCENT

COVID19 

MORTALITY

INDOOR AIR 

POLLUTION 

DEATHS 

OUTDOOR AIR 

POLLUTION 

DEATHS CO2 EMISSIONS FOOD INSECURTY

null null 106310 3 44 100 null null  8.72 null

 3.05  1.03 25203199 2 86 910  0.02   2.86  16.88 null

 1.65  0.86 8955108 3 59 10311  0.07  4.31  7.89 null

 1.53  0.61 163046173 1 37 11755  7.93    6.32  0.50 null

 2.44  0.90 11539326 2 98 24367  0.09   4.65  8.71 null

 2.77   0.97 211049518 2 87 411854  0.90  4.07  2.33 null

 4.09   0.71	 7000116 3 75 16609  1.43  5.78  6.69 null

 1.94   0.97	 37411038 3 81 24445  0.01  2.84  15.59 null

 2.19   0.94 18952035 3 88 26726  0.61  4.49  4.55 null

 2.16  0.86	 4130299 3 57 7315  0.84  5.30  4.48 null

  0.48  0.91	 1198573 3 67 326  0.05  6.55  6.37 null

  1.80  0.80 10689213 3 74 29479  0.19  5.74  9.93 null

 0.98   1.14 5771876 3 88 2492  0.02  4.43  6.06 null

  0.95   0.84	 1325649 3 69 1183  0.75  2.22  14.13 null

 1.05   0.81 5532159 2 85 918  0.03  2.03  8.11 null

 1.84   0.80 65129730 2 81 105631  0.03  3.31  5.33 null

 2.42   0.99	 83517046 3 77 84482  0.06  4.44  9.52 null

 0.84   0.91 30417857 1 57 780  4.85  2.66  0.47  0.49

 3.05   0.80	 10473452 3 79 10764  0.06  5.84  7.08 null

 3.57   0.62	 9684679 3 72 28173   1.32  5.17  5.11 null

 0.45   1.01 339037 2 94 29   0.04  2.67   10.82 null

 1.09   1.27	 1366417755 2 34 230010  4.86  8.26  1.84 null

 2.74   0.99	 270625567 2 56 46349  4.15  3.46  2.01 null

 1.96   1.06	 4882498 3 63 4915  0.06  3.59  8.19 null

 0.76   0.60 8519373 1 93 6370  0.04  5.76  7.58 null

 3.00   0.86	 60550092 3 71 122005  0.06  4.78  5.79 null

 1.70   1.17 126860299 3 92 10470 0.01  3.67  9.31 null

  1.74   0.80 52573967 1 28 2825  4.85  1.73  0.33  2.99

 1.79   1.09	 1906740 2 68 2166  0.63  4.58  3.70 null

 1.58   1.10 2759631 3 68 3993  0.15  4.90  4.76 null

 1.18   0.99 615726 3 91 800  0.03  3.85  15.63 null

 3.37   0.81	 18628748 1 17 1151  5.90  0.94  0.08  2.99

 9.25   0.92 127575529 2 80 217740  1.65  5.25  3.70 null

 1.13   0.86	 17097123 3 92 17245  0.02  4.49  9.66 null

 0.99   1.09	 4783061 2 87 26  0.03  2.11  7.69 null

 1.25   0.86 200963603 1 51 2063  4.06  3.19  0.68  9.99

 3.27   0.57 2083457 3 58 5016  2.15  6.64  3.61 null

 0.66   0.84	 5378858 3 83 767  0.05  2.78  8.23 null

 2.43   0.59 37887771 3 60 68482  0.61  5.71  8.89 null

 2.03   0.89	 10226178 3 66 16983  0.15  3.72  5.32 null

 0.23   0.89 2832071 3 99 489 0.00  9.29  38.74 null

 2.69   0.66	 19364557 3 54 28616  1.37  4.47  3.97 null

 2.29   1.00 145872259 3 75 111895   0.02  5.43  11.31 null

 0.05   1.14 5804343 3 100 31  0.01  6.69  6.84 null

 3.09   0.81 5457011 3 54 11886  0.27  5.74  6.62 null

 1.76   0.97	 2078654 3 55 4279  0.37  4.31  6.87 null

 3.44   1.10 58558267 2 67 54511  0.92  4.09  8.18  10.00

 1.48   0.95 51225320 3 81 1847  0.00  5.90  12.15 null

 2.21   1.04	 46736782 3 81 78566  0.13  4.11  5.89 null

 1.43   1.06 10036391 2 88 14151  0.05  2.44  4.27 null

 1.60   1.04 8591361 3 74 10676  0.06  3.60  4.52 null

 0.84   0.73	 83429607 2 76 41527  0.09  10.12  5.24 null

 0.81   1.06 44269587 1 24 343  4.35  1.54  0.13  2.99

 2.88   0.91 67530161 3 84 127570  0.06  4.08  5.82 null

 1.78   0.89 329064916 2 82 592537  0.02  3.84  16.16 null

 4.11   0.83	 14645473 1 32 1574  5.93  1.79  0.72  4.99
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B. DATA RESOURCES 

SUMMARY 

These data were gathered from different sources such as literature sources or 

publicly online databases. This document provides the references that provide the 

data of the table content.  

A wide range of the aspects of the countries (such as sociological, economic, e.g.) 

that can have any impact on the survival of the specific variants, were included as 

the attributes of the table. 

Countries (city_name) 

https://covariants.org/per-country  

Number of total countries that are included in this database is 58. 

Bonaire and Curacao were excluded in the study due to insufficient information on 

the selected references. 

56 countries with common Sars-CoV-2 variant data were included in the study.  

These countries were selected for further analysis. 

Countries that were used in this study by continents: 

AFRICA: 1. Ghana 2. Kenya 3. Malawi 4. Nigeria 5. South Africa 6. Uganda 7. 

Zimbabwe ASIA: 1. Cyprus 2. Turkey 3. Russia 4. Bangladesh 5. India 6. 

Indonesia 7. Israel 8. Japan 9. Qatar 10. Singapore 11. South Korea AUSTRALIA: 

1. Australia 2. New Zeland EUROPE: 1. Austria 2. Belgium 3. Bulgaria 4. Croatia 

5. Czech Republic 6. Denmark 7. Estonia 8. Finland 9. France 10. Germany 11. 

Greece 12. Hungary 13. Iceland 14. Ireland 15. Italy 16. Latvia 17. Lıthuania 18. 

Luxembourg 19. Netherlands 20. North Macedonia 21. Norway 22. Poland 23. 

Portugual 24. Romania 25. Slovakia 26. Slovenia 27. Spain 28. Sweden 29. 
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Switzerland 30. United Kingdom NORTH AMERICA: 1. Canada 2. USA 3. 

Mexico SOUTH AMERICA: 1. Brazil 2. Chile 3. Aruba 

Population Size (population_number) 

https://www.populationpyramid.net/  

Population pyramid (population_growth) 

https://www.populationpyramid.net/  

  

(figure source: https://www.ck12.org/biology/population-structure-

1501903452.12/lesson/Age-Sex-Structure-of-Populations-Advanced-BIO-ADV/ 

last access time: 27.04.2021, 17:03) 

GDP per capita (GDP) 

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD  

Last entry (current) data was used.  

The fractional numbers rounded to whole numbers.  

Exposure to Solar UV Radiation (Sunligh_exposure) 

https://apps.who.int/gho/data/view.main.35300  

For the countries that have not any information about sunlight exposure in this 

application, the information of the nearest country was used (for Aruba, Venezuela 

used.) 

Climate (temperature) 
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https://worldpopulationreview.com/country-rankings/hottest-countries-in-the-world 

Average temperature was used for representing climate.  

Drug Resistance Index (antibiotic_use_freq) 

https://resistancemap.cddep.org/DRI.php   

Gini Index (income_inequality) 

https://data.worldbank.org/indicator/SI.POV.GINI?name_desc=false&view=map&

year=2019  

To estimate income inequality. 

The fractional numbers rounded to whole numbers.  

Corporate Tax Rates (tax_rates) 

https://taxfounhttps://data.worldbank.org/indicator/SI.POV.GINI?name_desc=false

&view=map&year=2019dation.org/publications/corporate-tax-rates-around-the-

world/  

The fractional numbers rounded to whole numbers.  

Total Deaths due to COVID-19 (covid_19_mortality) 

https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?  

COVID-19 recovery cases in number (covid_19_mortality) 

https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?  

COVID-19 Case Fatality Rate by % (covid_19_mortality_freq) 

https://ourworldindata.org/explorers/coronavirus-data-

explorer?tab=table&zoomToSelection=true&time=2020-03-

01..latest&pickerSort=asc&pickerMetric=location&Metric=Case+fatality+rate&Int

erval=Cumulative&Relative+to+Population=true&Align+outbreaks=false  

COVID-19 Reproduction Rate (covid_19_reproduction) 
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https://ourworldindata.org/explorers/coronavirus-data-

explorer?tab=table&zoomToSelection=true&time=2020-03-

01..latest&pickerSort=asc&pickerMetric=location&Metric=Reproduction+rate&Int

erval=7-

day+rolling+average&Relative+to+Population=true&Align+outbreaks=false&coun

try=USA~GBR~CAN~DEU~ITA~IND   

Prevalence of Total Overweight Adults (overweight_adults) 

https://apps.who.int/gho/data/view.main.CTRY2430A?lang=en  

Last entry (current) data was used (2016). 

The fractional numbers rounded to whole numbers.  

Consumption of the Vegetable Oil (consumption_veg_oil) 

https://data.worldobesity.org/maps-obesity-day/?mapid=62  

This database uses the data of the FAO (Food and Agriculture of the United 

Nations : http://www.fao.org/faostat/en/#data/FBS ) and visualize the data.  

The fractional numbers rounded to whole numbers. 

Consumption of the Animal Fat (consumption_animal_fat) 

https://data.worldobesity.org/maps-obesity-day/?mapid=61  

This database uses the data of the FAO (Food and Agriculture of the United 

Nations : http://www.fao.org/faostat/en/#data/FBS ) and visualize the data.  

The fractional numbers rounded to whole numbers. 

Consumption of Sugars (consumption_sugar) 

https://data.worldobesity.org/maps-obesity-day/?mapid=67  

This database uses the data of the FAO (Food and Agriculture of the United 

Nations : http://www.fao.org/faostat/en/#data/FBS ) and visualize the data.  
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The fractional numbers rounded to whole numbers. 

Prevalence of undernourishment by percentage (under_nourishment) 

https://data.worldbank.org/indicator/SN.ITK.DEFC.ZS  

Conflict Cases (conflict) 

https://acleddata.com/dashboard/#/dashboard  

Total events (reported) were used. 

Vegetation Index (forest_area) 

https://data.worldbank.org/indicator/AG.LND.FRST.ZS  

Forest Area is used for representing vegetation. 

Average Precipitation (rainfall) 

https://data.worldbank.org/indicator/AG.LND.PRCP.MM  

IPC/CH (IPC/CH) 

https://hungermap.wfp.org/  

To class https://hungermap.wfp.org/ify food insecurity.  

The upper bound of the color scheme is used as an integer in the DB. 

The index in this database was used as a percentage (e.g. index 1 in this database 

was used as 100 in the study).  

The resulting fractional numbers rounded to whole numbers. 

Anemia in pregnant women (anemia) 

https://ourworldindata.org/grapher/anemia-pregnant-women-vs-children?tab=table  

The fractional numbers rounded to whole numbers. 

Global prevalence of Zinc Deficiency (zinc_defficiency) 
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https://ourworldindata.org/grapher/global-prevalence-of-zinc-deficiency  

Most recent data (2005) was used. 

The fractional numbers rounded to whole numbers. 

Prevalence of Vitamin A deficiency (vit_A_defficiency) 

https://ourworldindata.org/grapher/prevalence-of-vitamin-a-deficiency-in-

children?tab=table  

The fractional numbers rounded to whole numbers. 

Vitamin D status Around the World (vit_D_defficiency) 

https://www.osteoporosis.foundation/educational-hub/topic/vitamin-d  

The fractional numbers rounded to whole numbers.  

Average Household Size: Number of members (household_type) 

https://population.un.org/Household/index.html#/countries/533  

Urban Population as % of Total Population (open_closed_index) 

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS   

Indoor Air Pollution Deaths (indoor_deaths) 

https://ourworldindata.org/indoor-air-pollution?country=   (From table “Share of 

Deaths From Indoor Air Pollution Percent”) 

Outdoor Air Pollution Deaths (outdoor_deaths) 

https://ourworldindata.org/outdoor-air-pollution  (From table “Share of Deaths 

From Outdoor Air Pollution Percent”) 

CO2 Emissions (co2) 

https://ourworldindata.org/co2-emissions (From “CO2 emissions per capita”) 

Variant Name (variant_name) 
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https://covariants.org/per-country  

In the DB of https://covariants.org/per-country , there are 27 variants of the virus 

that are related with the countries.  

In our tables, the variants that are related with the selected countries were used. 

Frequency (frequency) 

https://covariants.org/per-country  

The variant frequency of the countries. 

The upper bound of the frequency data is used for each time interval. 

Interpolated data that has no frequency was ignored. 

Time Interval (time_interval) 

https://covariants.org/per-country  

There are three time intervals for dividing the viral circulation. 

Categorization of the time intervals: interval_1: 0 - 2020/07/28, interval_2: 

2020/07/28 - 2020/10/29,  interval_3: 2020/10/29 - 2021/04/19. 

Related Spike Mutations of the Variants (variant_has_mutations) 

https://covariants.org/variants 

Disease Statistics (disease_frequency) 

CANCER (For All Types of Cancer): https://gco.iarc.fr/today/online-analysis-

map?v=2020&mode=population&mode_population=continents&population=900&

populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0

&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_it

ems=10&group_cancer=1&include_nmsc=1&include_nmsc_other=1&projection=

natural-

earth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=

0&show_ranking=0&rotate=%255B10%252C0%255D   
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Lung Cancer: https://ourworldindata.org/grapher/lung-cancer-deaths-per-100000-

by-sex-1950-2002?tab=table  

Asthma: https://ourworldindata.org/grapher/asthma-prevalence 

COPD: https://statistics.blf.org.uk/copd (Number of Deaths by COPD per million 

section).  

Pneumonia: https://ourworldindata.org/grapher/pneumonia-death-rates-age-

standardized  

NDCs (Non-communicable Diseases): https://ourworldindata.org/grapher/burden-

of-disease-rates-from-ncds?tab=table (to get more information about NDCs: 

https://ourworldindata.org/burden-of-disease ) 

Diabetes:  https://ourworldindata.org/grapher/diabetes-prevalence  

Thyroid Diseases (Thyroid Diseases Relatedness via Iodine Levels): 

https://www.who.int/vmnis/iodine/status/summary/IDD_estimates_table_2007.pdf?

ua=1 (in this section, the iodine levels were used to indicate thyroid diseases. 

“Median urinary iodine concentration” data of the reference table was used). 

Diarrheal Diseases: https://ourworldindata.org/grapher/diarrheal-disease-death-

rates  

Colorectal Cancer: https://www.worldgastroenterology.org/UserFiles/file/wdhd-

2008-map-of-digestive-disorders.pdf (The data of “Global Colorectal Cancer 

Incidence” section was used.) (The sum of female and male incidence rates was 

used.) 

Dyspepsia: https://www.worldgastroenterology.org/UserFiles/file/wdhd-2008-map-

of-digestive-disorders.pdf (The data of “Global Functional Dyspepsia Prevalence” 

section was used.) 
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Constipation: https://www.worldgastroenterology.org/UserFiles/file/wdhd-2008-

map-of-digestive-disorders.pdf (The data of “Global Functional Constipation 

Prevalence” section was used.) (Upper bound of the prevalence statistics was used.)  

Irritable Bowel Syndrome: 

https://www.worldgastroenterology.org/UserFiles/file/wdhd-2008-map-of-

digestive-disorders.pdf (The data of “Global Irritable Bowel Syndrome Prevalence” 

section was used.)(The data that has the latest survey date was used.)(If there was 

no other data, the data that is related with children was used .) 

 

Air Toxicity Levels (air_toxicity_levels) 

https://www.iqair.com/world-air-quality-ranking  

For countries that have more than one entry, the most toxic city data was used. 

General Toxicity Levels (general_toxicity_levels) 

https://www.iqair.com/world-most-polluted-countries
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C. SET 2 DATA TABLE: MUTANT AND VARIANT TYPES 

 

COUNTRIES

GENERAL 

DOMINANT 

VARIANT // 

MUTATION

GENERAL 

DOMINANT 

VARIANT // 

MUTATION Freq

GENERAL 

20A.EU2 Freq

GENERAL 

20A/S:154K Freq

GENERAL 

20A/S:439K Freq

GENERAL 

20A/S:478K Freq

GENERAL 

20A/S:484K Freq

ARUBA ORF1a:S3675  0.89 0 0 0 0 0

AUSTRALIA  S:S477  0.91 0 0 0 0 0

AUSTRIA ORF1a:S3675  0.91  0.36 0  0.24 0 0

BANGLADESH ORF1a:S3675  0.98 0 0 0 0 0

BELGIUM ORF1a:S3675  0.97  0.40 0  0.18 0 0

BRAZIL S:E484  0.95 0 0 0 0 0

BULGARIA  more than one  0.98 0 0 0 0 0

CANADA  more than one  0.78  0.16 0 0 0 0

CHILE ORF1a:S3675  0.80 0 0 0 0 0

CROATIA  S:H69-  0.92 0 0  0.37 0 0

CYPRUS 20A/S:439K  0.91 0 0  0.91 0 0

CZECHIA ORF1a:S3675  0.97 0 0  0.74 0 0

DENMARK ORF1a:S3675  0.97  0.18 0  0.15 0  0.03

ESTONIA  S:H69-  0.91 0 0 0 0 0

FINLAND ORF1a:S3675  0.92  0.24 0 0 0 0

FRANCE ORF1a:S3675  0.91  0.68 0  0.08 0  0.03

GERMANY  more than one  0.96  0.11 0  0.11 0 0

GHANA S:P681  0.80 0 0 0 0 0

GREECE ORF1a:S3675  0.97 0 0 0 0 0

HUNGARY S:S477  0.93  0.93 0 0 0 0

ICELAND  20E (EU1)  0.90 0 0  0.08 0 0

INDIA S:P681  0.74 0  0.37 0  0.29 0

INDONESIA  S:P681  0.75 0 0 0 0 0

IRELAND  S:P681  0.98 0 0  0.74 0 0

ISRAEL  S:P681  0.86 0 0 0 0 0

ITALY 20I/501Y.V1  0.89  0.11 0  0.18 0  0.01

JAPAN S:N501  0.94 0 0 0 0 0

KENYA ORF1a:S3675  0.79 0 0 0 0 0

LATVIA S:Y144-  0.64 0 0 0 0 0

LITHUANIA  S:H69-  0.89 0 0 0 0 0

LUXEMBOURG ORF1a:S3675  0.95  0.40 0 0 0 0

MALAWI  more than one  1.00 0 0 0 0 0

MEXICO S:P681  0.90 0 0 0 0 0

NETHERLANDS 20I/501Y.V1  0.94  0.14 0  0.11 0 0

NEW ZEALAND  S:P681  1.00 0 0 0 0 0

NIGERIA  more than one  1.00 0 0 0 0  0.43

NORTH 

MACEDONIA  S:H69-  1.00 0 0 0 0 0

NORWAY ORF1a:S3675 0 0.99  0.34 0  0.15 0 0

POLAND  more than one  0.99 0 0  0.24 0 0

PORTUGUAL ORF1a:S3675  0.97  0.15 0 0 0 0

QATAR ORF1a:S3675  1.00 0 0 0 0 0

ROMANIA  more than one  0.87 0 0 0 0 0

RUSSIA  S:S477  0.29 0 0 0 0 0

SINGAPORE ORF1a:S3675  0.73 0 0 0 0 0

SLOVAKIA  more than one  0.98 0 0 0 0 0

SLOVENIA  S:H69-  0.92  0.41 0  0.75 0 0

SOUTH AFRICA S:N501  1.00 0 0 0 0 0

SOUTH KOREA  more than one  0.20 0 0 0 0 0

SPAIN ORF1a:S3675  0.93 0.03 0  0.06 0 0

SWEDEN  more than one  0.96  0.27 0  0.31 0 0

SWITZERLAND ORF1a:S3675  0.96  0.33 0  0.07 0 0

TURKEY  S:N501  0.92 0 0 0 0 0

UGANDA S:P681  1.00 0 0 0 0 0

UK  more than one  0.99  0.04 0  0.06  0.02 0

USA ORF1a:S3675  0.83 0 0 0 0 0

ZIMBABWE  more than one  0.94 0 0 0 0 0
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GENERAL 

20A/S:98F Freq

GENERAL 

20B/S:1122L Freq

GENERAL 

20B/S:626S Freq

GENERAL 

20C/S:452R Freq

GENERAL 

20C/S:484K Freq

GENERAL 

20C/S:80Y Freq

GENERAL 20E 

(EU1) Freq

GENERAL 

20H/501Y.V2 

Freq

GENERAL 

20I/501Y.V1 Freq

GENERAL 

20J/501Y.V3 Freq

0 0 0 0 0 0 0 0  0.79 0

0 0 0 0 0 0 0 0  0.51 0

0 0 0 0 0 0  0.16  0.27  0.83 0

0 0 0 0 0 0 0  0.68 0 0

 0.48 0 0 0 0 0  0.23  0.10  0.83  0.09

0 0 0 0 0 0 0 0 0  0.93

0 0 0 0 0 0 0 0  0.98 0

0 0 0 0 0 0 0 0  0.73 0

0 0 0 0 0 0 0 0 0  0.33

0 0 0 0 0 0 0 0  0.73 0

0 0 0 0 0 0  0.17 0  0.42 0

0 0 0 0 0 0 0 0  0.90 0

 0.06 0  0.08 0 0 0  0.57 0  0.94 0

0 0 0 0 0 0  0.50 0  0.90 0

0 0 0 0 0 0  0.08 0  0.71 0

 0.03 0 0 0 0  0.13  0.16  0.11  0.77 0

 0.12 0 0 0 0 0  0.35  0.02  0.93 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0  0.89 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0  0.90 0 0 0

0 0 0 0 0 0 0 0  0.13 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0  0.84 0  0.91 0

0 0 0 0 0 0  0.04  0.03  0.78 0

0 0 0 0 0 0  0.67 0  0.89  0.04

0 0 0 0 0 0 0 0  0.50 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0  1.00 0  0.62 0

0 0 0 0 0 0  0.67 0  0.85 0

 0.27 0 0 0 0 0  0.27  0.23  0.69 0

0 0 0 0 0 0 0  1.00 0 0

0 0 0  0.07 0 0 0 0 0 0

 0.35 0 0 0 0 0  0.46  0.03  0.94  0.02

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0  0.30 0 0 0  0.43  0.10  0.96 0

 0.22 0 0 0 0 0 0 0  0.98 0

0 0 0 0 0 0  0.71 0  0.87 0

0 0 0 0 0 0 0 0  0.46 0

0 0 0 0 0 0 0 0  0.83 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0  0.43  0.28 0

0 0 0 0 0 0 0 0  0.97 0

0 0 0 0 0 0 0 0  0.76 0

0 0 0 0 0 0 0  0.88 0 0

0 0 0 0 0 0 0 0  0.19 0

0.03 0 0 0 0 0  0.84 0  0.83  0.05

 0.11  0.48 0 0 0 0  0.40  0.04  0.92 0

 0.06 0 0 0 0 0  0.35  0.02  0.90 0

0 0 0 0 0 0 0  0.20  0.54 0

0 0 0 0 0 0 0 0 0 0

 0.02 0  0.01 0 0 0.02 0 0  0.98 0

0 0 0  0.19  0.14 0 0 0  0.56  0.06

0 0 0 0 0 0 0 0 0 0
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GENERAL 

ORF1a:S3675 

Freq

GENERAL 

S:677H.Robin1 

Freq

GENERAL 

S:677P.Pelican 

Freq

GENERAL S:E484 

Freq

GENERAL S:H655 

Freq

GENERAL S:H69- 

Freq

GENERAL S:K417 

Freq

 0.89 0 0 0 0  0.83 0

 0.71 0 0 0 0  0.60 0

 0.91 0 0  0.29 0  0.85  0.29

 0.98 0 0  0.73 0 0  0.83

 0.97 0 0  0.15  0.09  0.83  0.10

 0.95 0 0  0.95  0.93 0 0

 0.98 0 0 0 0  0.98 0

 0.78 0 0 0 0  0.78 0

 0.80 0 0  0.37  0.34 0 0

 0.74 0 0 0 0  0.92 0

null 0 0 null null null null

 0.97 0 0 0 0  0.95 0

 0.97 0 0  0.03 0  0.95 0

 0.92 0 0 0 0  0.91 0

 0.92 0 0 0 0  0.76 0

 0.91 0 0  0.14  0.05  0.79  0.12

 0.96 0 0  0.04 0  0.93  0.02

0 0 0 0 0 0 0

 0.97 0 0 0 0  0.90 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

 0.11 0 0  0.50 0  0.10 0

0 0 0 0 0 0 0

 0.97 0 0  0.06 0  0.91 0

 0.81 0 0  0.04 0  0.83  0.03

 0.60 0 0  0.06  0.05  0.90 0

 0.50 0 0  0.56 0  0.60 0

 0.79 0 0 0 0 0 0

 0.26 0 0 0 0  0.62 0

 0.88 0 0 0 0  0.89 0

 0.95 0 0  0.26 0  0.69  0.24

 0.93 0 0  1.00 0 0  1.00

 0.09 0 0 0 0 0 0

 0.99 0 0  0.06  0.02  0.95  0.03

 0.83 0 0 0 0 0 0

 1.00 0 0  0.50 0  1.00 0

0 0 0 0 0  1.00 0

 0.99 0 0  0.11 0  0.98  0.10

 0.96 0 0 0 0  0.89 0

 0.97 0 0  0.09 0  0.86 0

 1.00 0 0 0 0  0.46  0.62

 0.87 0 0 0 0  0.83 0

0 0 0 0 0 0 0

 0.73 0 0  0.58 0  0.28  0.44

 0.81 0 0 0 0  0.87 0

 0.81 0 0 0 0  0.92 0

 0.94 0 0  0.91 0 0  0.99

 0.20 0 0 0 0  0.20 0

 0.93 0 0  0.09  0.05  0.85 0

 0.96 0 0  0.05 0  0.92  0.04

 0.96 0 0  0.03 0  0.91  0.01

 0.73 0 0  0.38 0  0.53  0.28

0 0 0 0 0 0 0

 0.99 0 0  0.02  0.01  0.98 0

 0.83  0.03  0.02 0.16  0.06  0.59 0

 0.94 0 0 0 0 0  0.94
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GENERAL S:L18 

Freq

GENERAL S:N501 

Freq

GENERAL S:P681 

Freq

GENERAL S:Q677 

Freq

GENERAL S:S477 

Freq

GENERAL S:Y144- 

Freq

GENERAL 

S:Y453F Freq

0  0.81  0.81 0 0  0.79 0

0  0.67  0.81 0  0.91  0.60 0

 0.13  0.89  0.89 0  0.36  0.82 0

 0.76  0.80  0.68 0 0 0 0

 0.12  0.94  0.84 0  0.40  0.83 0

 0.93  0.96 0 0 0  0.11 0

0  0.98  0.98 0 0  0.98 0

 0.19  0.73  0.78  0.10  0.16  0.76 0

 0.34  0.44 0 0 0 0 0

0  0.73  0.73 0 0  0.73 0

null null null null null null null

0  0.96  0.93 0 0  0.92 0

 0.08  0.95  0.96  0.03  0.18  0.90  0.52

 0.50  0.90  0.90 0 0  0.90 0

 0.12  0.88  0.78 0  0.24  0.77 0

 0.11  0.88  0.81  0.03  0.70  0.79 0

 0.16  0.96  0.94  0.09  0.13  0.91 0

0 0  0.80 0 0 0 0

0  0.91  0.95 0 0  0.95 0

0 0 0 0  0.93 0 0

0 0 0 0 0 0 0

 0.06  0.20  0.74  0.11 0  0.17 0

0 0  0.75 0 0 0 0

 0.38  0.93  0.98 0 0  0.94 0

 0.03  0.81  0.86  0.03 0  0.80 0

 0.06  0.94  0.91  0.03  0.11  0.89 0

 0.01  0.50  0.50  0.06 0  0.50 0

0  0.78  0.57 0 0 0 0

 0.48  0.63  0.62 0 0  0.64 0

 0.75  0.86  0.88 0 0  0.87 0

 0.30  0.93  0.70 0  0.45  0.70 0

0  1.00 0 0 0 0 0

0  0.07  0.90 0 0  0.07 0

 0.11  0.98  0.95  0.01  0.14  0.94 0

0  0.75  1.00 0 0 0 0

0  0.44  0.47  0.81 0  0.88 0

0 0 0 0 0 0 0

 0.15  0.98  0.97 0  0.34  0.97 0

0  0.99  0.99 0 0  0.93 0

 0.05  0.93  0.92 0  0.15  0.83 0

0  0.79  0.46 0 0  0.46 0

0  0.87  0.87 0 0  0.87 0

0 0  0.21 0  0.29 0 0

0  0.69  0.68 0 0  0.28 0

0  0.97  0.98 0 0  0.98 0

0  0.77  0.80 0  0.41  0.76 0

 0.50  1.00 0 0 0 0 0

0  0.19  0.20 0 0  0.20 0

 0.08  0.89  0.87  0.03  0.03  0.84 0

 0.10  0.96  0.94 0  0.27  0.93 0

 0.02  0.92  0.95  0.03  0.34  0.94 0

0  0.92  0.64 0 0  0.67 0

0 0  1.00 0 0 0 0

 0.40  0.99  0.99  0.02  0.04  0.98 0

 0.06  0.64  0.64  0.08  0.05  0.62 0

0 0 0 0 0 0 0
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D. TIME INTERVAL FREQUENCIES 

 

COUNTRIES 20E (EU1)_time_1 20E (EU1)_time_2 20E (EU1)_time_3 20I/501Y.V1_time_1 20I/501Y.V1_time_2 20I/501Y.V1_time_3

ARUBA 0 0 0 0 0  0.79

AUSTRALIA 0 0 0 0 0  0.52

AUSTRIA 0 0.09 0.16 0 0 0.83

BANGLADESH 0 0 0 0 0 0

BELGIUM 0.04 0.23 0.22 0 0 0.83

BRAZIL 0 0 0 0 0 0

BULGARIA 0 0 0 0 0 0.98

CANADA 0 0 0 0 0 0.73

CHILE 0 0 0 0 0 0

CROATIA 0 0 0 0 0 0.73

CYPRUS 0 0 0 0 0 0.90

CZECHIA 0 0 0 0 0 0.90

DENMARK 0 0.29 0.57 0 0 0.94

ESTONIA 0 0 0.50 0 0 0.90

FINLAND 0 0 0.08 0 0 0.71

FRANCE 0 0.14 0.16 0 0 0.77

GERMANY 0 0.18 0.35 0 0 0.93

GHANA 0 0 0 0 0 0

GREECE 0 0 0 0 0 0.89

HUNGARY 0 0 0 0 0 0

ICELAND 0 0.90 0.79 0 0 0

INDIA 0 0 0 0 0 0.13

INDONESIA 0 0 0 0 0 0

IRELAND 0.05 0.74 0.84 0 0 0.91

ISRAEL 0 0 0.04 0 0 0.78

ITALY 0 0.64 0.67 0 0 0.89

JAPAN 0 0 0 0 0 0.50

KENYA 0 0 0 0 0 0

LATVIA 0 0.40 1.00 0 0 0.62

LITHUANIA 0 0.33 0.67 0 0 0.85

LUXEMBOURG 0 0.25 0.27 0 0 0.69

MALAWI 0 0 0 0 0 0

MEXICO 0 0 0 0 0 0

NETHERLANDS 0.02 0.35 0.46 0 0 0.94

NEW ZEALAND 0 0 0 0 0 0

NIGERIA 0 0 0 0 0 0

NORTH 

MACEDONIA 0 0 0 0 0 0

NORWAY 0.15 0.43 0.26 0 0 0.96

POLAND 0 0 0 0 0 0.98

PORTUGUAL 0 0.64 0.71 0 0 0.87

QATAR 0 0 0 0 0 0.46

ROMANIA 0 0 0 0 0 0.87

RUSSIA 0 0 0 0 0 0

SINGAPORE 0 0 0 0 0 0.28

SLOVAKIA 0 0 0 0 0 0.97

SLOVENIA 0 0 0 0 0 0.76

SOUTH AFRICA 0 0 0 0 0 0

SOUTH KOREA 0 0 0 0 0 0.19

SPAIN 0.58 0.81 0.84 0 0 0.83

SWEDEN 0 0.40 0.39 0 0 0.92

SWITZERLAND 0.03 0.35 0.31 0 0 0.90

TURKEY 0 0 0 0 0 0.54

UGANDA 0 0 0 0 0 0.56

UK 0.01 0.65 0.67 0 0 0.98

USA 0 0 0 0 0 0.56

ZIMBABWE 0 0 0 0 0 0
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ORF1a:S3675_time_1 ORF1a:S3675_time_2 ORF1a:S3675_time_3 S:E484_time_1 S:E484_time_2 S:E484_time_3

0 0  0.89 0 0 0

0 0  0.71 0 0 0

0 0 0.91 0 0 0.29

0 0 0.98 0 0 0.73

0 0 0.97 0 0 0.15

0 0 0.95 0 0.27 0.95

0 0 0.98 0 0 0

0 0.10 0.78 0 0 0

0 0 0.80 0 0 0.37

0 0 0.74 0 0 0

0 0 0.97 0 0 0

0 0 0.97 0 0 0

0 0 0.97 0 0 0.03

0 0 0.92 0 0 0

0 0 0.92 0 0 0

0 0 0.91 0 0 0.14

0.05 0 0.96 0 0 0.04

0 0 0 0 0 0

0 0 0.97 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0.11 0 0.03 0.50

0 0 0 0 0 0

0 0 0.97 0 0 0.06

0 0 0.81 0 0 0.04

0 0 0.60 0 0 0.07

0 0 0.50 0 0 0.56

0 0 0.79 0 0 0

0 0 0.26 0 0 0

0 0 0.88 0 0 0

0 0 0.95 0 0 0.26

0 0 0.93 0 0 1.00

0 0 0.09 0 0 0

0 0 0.99 0 0 0.06

0 0 0.83 0 0 0

0 0 1.00 0 0 0.50

0 0 0 0 0 0

0 0 0.99 0 0 0.11

0 0 0.96 0 0 0

0 0 0.97 0 0 0.09

0 0 1.00 0 0 0

0 0 0.87 0 0 0

0 0 0 0 0 0

0 0 0.71 0 0 0.58

0 0 0.81 0 0 0

0 0 0.81 0 0 0

0 0.07 0.94 0 0.18 0.91

0 0 0.20 0 0 0

0 0 0.93 0.01 0 0.09

0 0 0.96 0 0 0.05

0 0 0.96 0 0 0.03

0 0 0.73 0 0 0.38

0 0 0.83 0 0 0.16

0 0 0.99 0 0 0.02

0 0 0.83 0 0 0.16

0 0 0.91 0 0 0
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S:H69-_time_1 S:H69-_time_2 S:H69-_time_3 S:L18_time_1 S:L18_time_2 S:L18_time_3

0 0  0.83 0 0 0

0 0 0.60 0 0 0

0 0.07 0.85 0 0 0.13

0 0 0 0 0 0.76

0 0.02 0.83 0 0 0.12

0 0 0 0 0 0.93

0 0 0.98 0 0 0

0 0 0.78 0 0.09 0.19

0 0 0 0 0 0.34

0 0.21 0.92 0 0 0

0 0.74 0.94 0 0 0

0 0.74 0.95 0 0 0

0 0.27 0.95 0 0.02 0.08

0 0 0.91 0 0 0.50

0 0 0.79 0 0 0.12

0 0.04 0.79 0 0 0.11

0 0.07 0.93 0 0.05 0.16

0 0 0 0 0 0

0 0 0.90 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0.10 0 0.02 0.06

0 0 0 0 0 0

0 0 0.91 0 0.24 0.38

0 0 0.83 0 0 0.03

0 0 0.90 0 0 0.07

0 0 0.60 0 0 0.01

0 0 0 0 0 0

0 0 0.62 0 0.11 0.47

0 0 0.89 0 0.33 0.75

0 0.01 0.69 0 0 0.30

0 0 0 0 0 0

0 0 0 0 0 0

0 0.03 0.95 0 0.03 0.11

0 0 0 0 0 0

0 0 1.00 0 0 0

0 0 1.00 0 0 0

0 0.04 0.98 0 0.12 0.18

0 0 0.89 0 0 0

0 0 0.86 0 0 0.08

0 0 0.46 0 0 0

0 0 0.83 0 0 0

0 0 0 0 0 0

0 0 0.28 0 0 0

0 0 0.89 0 0 0

0 0.32 0.92 0 0 0

0 0 0 0 0.04 0.50

0 0 0.20 0 0 0

0 0.06 0.85 0 0.01 0.08

0 0 0.92 0 0.05 0.10

0.01 0.04 0.91 0 0 0.02

0 0 0.53 0 0 0

0 0 0.59 0 0 0.05

0 0.04 0.98 0.02 0.34 0.40

0 0 0.59 0 0 0.06

0 0 0 0 0 0
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S:P681_time_1 S:P681_time_2 S:P681_time_3 S:Y144-_time_1 S:Y144-_time_2 S:Y144-_time_3

0 0  0.81 0 0  0.79

0 0 0.81 0 0 0.60

0 0 0.89 0 0 0.82

0.03 0.25 0.68 0 0 0

0 0 0.84 0 0 0.83

0 0 0 0 0 0.11

0 0 0.98 0 0 0.98

0 0 0.78 0 0 0.76

0 0 0 0 0 0

0 0 0.73 0 0 0.73

0 0 0.93 0 0 0.92

0 0 0.93 0 0 0.92

0 0 0.96 0 0 0.90

0 0 0.90 0 0 0.90

0 0 0.78 0 0 0.77

0 0 0.81 0 0 0.79

0 0 0.94 0 0 0.91

0 0 0.80 0 0 0

0 0 0.95 0 0 0.95

0 0 0 0 0 0

0 0 0 0 0 0

0.01 0.09 0.74 0 0.03 0.17

0 0 0.75 0 0 0

0 0 0.98 0 0 0.94

0 0 0.86 0 0 0.80

0 0 0.91 0 0.03 0.89

0 0.02 0.50 0 0 0.50

0 0 0.57 0 0 0

0 0 0.62 0 0 0.64

0 0 0.88 0 0 0.87

0 0 0.70 0 0 0.70

0 0 0 0 0 0

0 0 0.90 0 0 0.07

0 0 0.95 0 0 0.94

0 0.21 1.00 0 0 0

0 0 0.47 0 0 0.88

0 0 0 0 0 0

0 0 0.97 0 0 0.97

0 0 0.98 0 0 0.93

0 0 0.92 0 0 0.83

0 0 0.46 0 0 0.46

0 0 0.87 0 0 0.87

0 0.01 0.21 0 0 0

0 0 0.68 0 0 0.28

0 0 0.98 0 0 0.98

0 0 0.80 0 0 0.76

0 0 0 0 0 0

0.01 0 0.20 0 0 0.20

0 0 0.87 0.02 0 0.84

0 0 0.94 0 0 0.93

0 0 0.95 0 0 0.94

0 0 0.64 0 0 0.67

0 0.05 0.64 0 0.01 0.61

0 0 0.99 0 0 0.98

0 0.05 0.64 0 0.01 0.62

0 0 0 0 0 0



 

 

96 

E. SET 3 ANALYSES 
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F. Variant and Mutant Significance Index 
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Table A. The virulence index levels. 
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G. SARS-CoV-2 variant and mutation distributions (Global) 

The screen shot was gathered from 

https://www.gisaid.org/phylodynamics/global/nextstrain/ (Last Access time: 

15.05.2021, 17:25) 

https://www.gisaid.org/phylodynamics/global/nextstrain/
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H. Regression Results 
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İ. SET-1 CORELATIONS 
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J. Data Source Tables 

All databases and webpages were accessed in 15.05.2021 (Last Access time).
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